Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho các số thực \(a,b > 1\) thỏa mãn \({a^{{{\log }_b}a}} + 16{b^{{{\log }_a}\left(

Câu hỏi số 320505:
Vận dụng cao

Cho các số thực \(a,b > 1\) thỏa mãn \({a^{{{\log }_b}a}} + 16{b^{{{\log }_a}\left( {\frac{{{b^8}}}{{{a^3}}}} \right)}} = 12{b^2}.\) Giá trị của biểu thức \(P = {a^3} + {b^3}\)  là

Đáp án đúng là: D

Quảng cáo

Câu hỏi:320505
Phương pháp giải

Sử dụng các công thức \({\log _a}{b^\alpha } = \alpha {\log _a}b\left( {0 < a \ne 1;b > 0} \right)\)  để biến đổi giả thiết

Sử dụng bất đẳng thức Cô-si cho ba số không âm \(a,b,c\), ta có \(a + b + c \ge 3\sqrt[3]{{abc}}\)

Dấu “=” xảy ra khi \(a = b = c.\).

Giải chi tiết

Ta có \({a^{{{\log }_b}a}} + 16{b^{{{\log }_a}\left( {\frac{{{b^8}}}{{{a^3}}}} \right)}} = 12{b^2} \Leftrightarrow {a^{{{\log }_b}a}} + 16{b^{\left( {{{\log }_a}{b^8} - {{\log }_a}{a^3}} \right)}} = 12{b^2}\)

\( \Leftrightarrow {a^{{{\log }_b}a}} + 16{b^{\left( {{{\log }_a}{b^8} - {{\log }_a}{a^3}} \right)}} = 12{b^2} \Leftrightarrow {a^{{{\log }_b}a}} + 16{b^{\left( {8{{\log }_a}b - 3} \right)}} = 12{b^2} \Leftrightarrow {a^{{{\log }_b}a}} + 16{b^{\left( {\dfrac{8}{{{{\log }_b}a}} - 3} \right)}} = 12{b^2}\) (*)

Đặt \({\log _a}b = t \Rightarrow a = {b^t}\) . Lại có vì \(a,b > 1 \Rightarrow {\log _a}b > 0\) hay \(t > 0\).

Khi đó ta có

\(VT\left( * \right) = {a^{{{\log }_b}a}} + 16{b^{\left( {\frac{8}{{{{\log }_b}a}} - 3} \right)}} = {\left( {{b^t}} \right)^t} + 16.{b^{\frac{8}{t} - 3}} = {b^{{t^2}}} + 8.{b^{\frac{8}{t} - 3}} + 8.{b^{\frac{8}{t} - 3}}\)

\(\mathop  \ge \limits^{Co  - si} 3\sqrt[3]{{{b^{{t^2}}}.8.{b^{\frac{8}{t} - 3}}8.{b^{\frac{8}{t} - 3}}}} = 12\sqrt[3]{{{b^{{t^2}}}{b^{\frac{8}{t} - 3}}{b^{\frac{8}{t} - 3}}}}12\sqrt[3]{{{b^{{t^2} + \frac{8}{t} + \frac{8}{t} - 6}}}}\)

\(\mathop  \ge \limits{Co - si} 12\sqrt[3]{{{b^{3\sqrt[3]{{{t^2}.\frac{8}{t}.\frac{8}{t}}} - 6}}}} = 12\sqrt[3]{{{b^6}}} = 12{b^2}\)  (vì \({t^2} + \frac{8}{t} + \frac{8}{t} \ge 3\sqrt[3]{{{t^2}.\frac{8}{t}.\frac{8}{t}}} = 3\))

Hay \(VT\left( * \right) \ge 12{b^2}\) , dấu = xảy ra khi \(\left\{ \begin{array}{l}{b^{{t^2}}} = 8{b^{\frac{8}{t} - 3}}\\{t^2} = \frac{8}{t}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = 2\\{b^4} = 8b\end{array} \right. \Rightarrow \left\{ \begin{array}{l}t = 2\\b = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\log _b}a = 2\\b = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 2\\a = 4\end{array} \right.\left( {TM} \right)\)

Suy ra \(P = {a^3} + {b^3} = 64 + 8 = 72.\)

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com