Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Phương trình \({x^3} - 3{x^2} + 1 = 0\) có nghiệm thuộc khoảng ?

Câu hỏi số 328216:
Nhận biết

Phương trình \({x^3} - 3{x^2} + 1 = 0\) có nghiệm thuộc khoảng ?

Đáp án đúng là: C

Quảng cáo

Câu hỏi:328216
Phương pháp giải

Xét trên mỗi khoảng \(\left( {a;\,b} \right)\) của từng đáp án, ta tính \(f\left( a \right),\,\,f\left( b \right).\) Nếu \(f\left( a \right).f\left( b \right) < 0\) thì phương trình \(f\left( x \right) = 0\) có ít nhất một nghiệm thuộc \(\left( {a;\,b} \right).\)

Giải chi tiết

Ta có: \(f\left( x \right) = {x^3} - 3{x^2} + 1\) là hàm số liên tục trên \(\mathbb{R}\)

Có:  \(f\left( { - 1} \right) =  - 3;\,\,f\left( 0 \right) = 1 \Rightarrow f\left( { - 1} \right).f\left( 0 \right) < 0\),  phương trình có ít nhất một nghiệm thuộc \(\left( { - 1;0} \right).\)

Ta lại có: \(f\left( x \right) = {x^3} - 3{x^2} + 1 = {x^2}\left( {x - 3} \right) + 1 \ge 1\,\,\,,\,\forall x \ge 3\). Các đáp án A, B, D không thõa mãn.

Đáp án cần chọn là: C

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com