Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tính giới hạn sau \(\mathop {\lim }\limits_{x \to \,\,3} \dfrac{{\sqrt {5x - 6} .\sqrt[3]{{3x - 1}} - 2x}}{{{x^2}

Câu hỏi số 332160:
Vận dụng cao

Tính giới hạn sau \(\mathop {\lim }\limits_{x \to \,\,3} \dfrac{{\sqrt {5x - 6} .\sqrt[3]{{3x - 1}} - 2x}}{{{x^2} - x - 6}}\).

Đáp án đúng là: C

Quảng cáo

Câu hỏi:332160
Phương pháp giải

Sử dụng phương pháp nhân liên hợp để khử dạng \(\frac{0}{0}\).

Giải chi tiết

\(\mathop {\lim }\limits_{x \to \,\,3} \dfrac{{\sqrt {5x - 6} .\left( {\sqrt[3]{{3x - 1}} - 2} \right) + 2\sqrt {5x - 6}  - 2x}}{{{x^2} - x - 6}}\) \( = \mathop {\lim }\limits_{x \to \,\,3} \left[ {\dfrac{{\sqrt {5x - 6} .\left( {\sqrt[3]{{3x - 1}} - 2} \right)}}{{{x^2} - x - 6}} + \dfrac{{2\sqrt {5x - 6}  - 2x}}{{{x^2} - x - 6}}} \right]\)

\( = \mathop {\lim }\limits_{x \to \,\,3} \left[ {\dfrac{{3\sqrt {5x - 6} \left( {x - 3} \right)}}{{\left( {x - 3} \right)\left( {x + 2} \right)\left[ {{{\left( {\sqrt[3]{{3x - 1}}} \right)}^2} + 2\sqrt[3]{{3x - 1}} + 4} \right]}} + \dfrac{{2\left( {x - 3} \right)\left( { - x + 2} \right)}}{{\left( {x - 3} \right)\left( {x + 2} \right)\left( {\sqrt {5x - 6}  + x} \right)}}} \right]\)

\( = \mathop {\lim }\limits_{x \to \,\,3} \left[ {\dfrac{{3\sqrt {5x - 6} }}{{\left( {x + 2} \right)\left[ {{{\left( {\sqrt[3]{{3x - 1}}} \right)}^2} + 2\sqrt[3]{{3x - 1}} + 4} \right]}} + \dfrac{{2\left( { - x + 2} \right)}}{{\left( {x + 2} \right)\left( {\sqrt {5x - 6}  + x} \right)}}} \right]\)\( = \dfrac{1}{{12}}\)

Đáp án cần chọn là: C

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com