Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm giá trị của tham số \(a\) để hàm số sau liên tục tại \({x_0} = 1\) \(f(x) = \left\{

Câu hỏi số 332161:
Vận dụng

Tìm giá trị của tham số \(a\) để hàm số sau liên tục tại \({x_0} = 1\)

\(f(x) = \left\{ \begin{array}{l}\dfrac{{5{x^3} - 4x - 1}}{{{x^2} - 1}} & khi\,\,x > 1\\4ax + 5\,\,\,\, & khi\,\,x \le 1\end{array} \right.\).

Đáp án đúng là: B

Quảng cáo

Câu hỏi:332161
Phương pháp giải

Hàm số \(y = f\left( x \right)\) liên tục tại \(x = {x_0} \Leftrightarrow \mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\).

Giải chi tiết

Ta có:

\(\begin{array}{l}f\left( 1 \right) = 4a + 5\\\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \dfrac{{5{x^3} - 4x - 1}}{{{x^2} - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \dfrac{{5{x^2} + 5x + 1}}{{x + 1}} = \dfrac{{11}}{2}\\\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {4ax + 5} \right) = 4a + 5\end{array}\)

Hàm số liên tục tại \({x_0} = 1 \Leftrightarrow \mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = f\left( 1 \right) \Leftrightarrow 4a + 5 = \dfrac{{11}}{2} \Leftrightarrow a = \dfrac{1}{8}.\)

Đáp án cần chọn là: B

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com