Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tứ diện \(OABC\) có \(OA,\,\,OB,\,\,OC\) đôi một vuông góc. Biết \(OA = OB = OC = a\), tính diện

Câu hỏi số 336304:
Thông hiểu

Cho tứ diện \(OABC\) có \(OA,\,\,OB,\,\,OC\) đôi một vuông góc. Biết \(OA = OB = OC = a\), tính diện tích tam giác \(ABC\).

Đáp án đúng là: B

Quảng cáo

Câu hỏi:336304
Phương pháp giải

Công thức tính diện tích tam giác đều cạnh \(a:\,\,S = \frac{{{a^2}\sqrt 3 }}{4}\).

Giải chi tiết

Dễ thấy \(\Delta OAB = \Delta OAC = \Delta OBC\,\,\left( {c.g.c} \right) \Rightarrow AB = AC = BC\).

\( \Rightarrow \) Tam giác \(ABC\) đều cạnh \(AB = \sqrt {O{A^2} + O{B^2}}  = \sqrt {{a^2} + {a^2}}  = a\sqrt 2 \)

\({S_{ABC}} = \dfrac{{{{\left( {a\sqrt 2 } \right)}^2}\sqrt 3 }}{4} = \dfrac{{{a^2}\sqrt 3 }}{2}\).

Đáp án cần chọn là: B

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com