Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tứ diện \(S.ABC\) có \(G\) là trọng tâm tam giác \(ABC\), điểm \(M\) nằm

Câu hỏi số 336306:
Thông hiểu

Cho tứ diện \(S.ABC\) có \(G\) là trọng tâm tam giác \(ABC\), điểm \(M\) nằm trên đoạn SA sao cho \(AM = 2MS\). Mệnh đề nào dưới đây đúng?

Đáp án đúng là: B

Quảng cáo

Câu hỏi:336306
Phương pháp giải

Sử dụng công thức ba điểm: \(\overrightarrow {AB}  = \overrightarrow {AM}  + \overrightarrow {MB} \) và công thức trọng tâm của tam giác: \(\overrightarrow {MG}  = \frac{1}{3}\left( {\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC} } \right)\) với \(G\) là trọng tâm tam giác \(ABC\), \(M\) là điểm bất kì.

Giải chi tiết

\(\begin{array}{l}\overrightarrow {MG}  = \overrightarrow {MS}  + \overrightarrow {SG}  =  - \dfrac{1}{3}\overrightarrow {SA}  + \dfrac{1}{3}\left( {\overrightarrow {SA}  + \overrightarrow {SB}  + \overrightarrow {SC} } \right)\\ =  - \dfrac{1}{3}\overrightarrow {SA}  + \dfrac{1}{3}\overrightarrow {SA}  + \dfrac{1}{3}\overrightarrow {SB}  + \dfrac{1}{3}\overrightarrow {SC}  = \dfrac{1}{3}\overrightarrow {SB}  + \dfrac{1}{3}\overrightarrow {SC} \end{array}\)

Đáp án cần chọn là: B

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com