Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho \(\Delta ABC\) có \(A\left( { - 1;\,\,3} \right),\) đường cao \(BH:\,\,x - y = 0,\) phân giác trong của

Câu hỏi số 341693:
Vận dụng cao

Cho \(\Delta ABC\) có \(A\left( { - 1;\,\,3} \right),\) đường cao \(BH:\,\,x - y = 0,\) phân giác trong của góc \(C\) là \(CD:\,\,x + 3y + 2 = 0.\) Tọa độ của đỉnh \(B\) là:

Đáp án đúng là: B

Quảng cáo

Câu hỏi:341693
Phương pháp giải

Lập phương trình đường thẳng \(AC\) đi qua \(A\) và vuông góc với \(BH.\) 

Từ đó ta tìm được tọa độ điểm \(C\) là giao điểm của\(AC\) và  \(CD.\)

Gọi \(K\) là điểm đối xứng của \(H\) qua \(CD \Rightarrow \) tọa độ điểm \(K.\)

Lập phương trình đường thẳng \(BC\) đi qua \(K\) và \(C.\)

\( \Rightarrow B\) là giao điểm của \(BC\) và \(BH.\)

Giải chi tiết

Ta có: \(\overrightarrow {{n_{BH}}}  = \left( {1;\, - 1} \right).\)

Đường thẳng \(AC\) đi qua \(A\) và vuông góc với \(BH \Rightarrow AC\) nhận  vecto \(\left( {1;\,\,1} \right)\) làm VTPT

\( \Rightarrow AC:\,\,x + 1 + y - 3 = 0 \Leftrightarrow x + y - 2 = 0.\)

Khi đó tọa độ điểm \(C\) là nghiệm của hệ phương trình:

\(\left\{ \begin{array}{l}x + 3y + 2 = 0\\x + y - 2 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 4\\y =  - 2\end{array} \right. \Rightarrow C\left( {4; - 2} \right).\)

\(BH \cap AC = \left\{ H \right\} \Rightarrow \) tọa độ điểm \(H\) là nghiệm của hệ phương trình:

\(\left\{ \begin{array}{l}x + y - 2 = 0\\x - y = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 1\end{array} \right. \Rightarrow H\left( {1;\,\,1} \right).\)

Gọi \(K\) là điểm đối xứng của \(H\) qua \(CD\) 

Phương trình đường thẳng \(HK\) đi qua \(H\) và vuông góc với \(CD,\) nhận \(\left( {3; - 1} \right)\)  làm VTPT  là:

\(HK:\,\,\,3\left( {x - 1} \right) - \left( {y - 1} \right) = 0 \Leftrightarrow 3x - y - 2 = 0\)

Gọi \(I\) là giao điểm của \(CD\) và \(HK \Rightarrow \) tọa độ điểm \(I\) là nghiệm của hệ phương trình:

\(\left\{ \begin{array}{l}x + 3y + 2 = 0\\3x - y - 2 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{2}{5}\\y =  - \frac{4}{5}\end{array} \right. \Rightarrow I\left( {\frac{2}{5}; - \frac{4}{5}} \right).\)

\(K\) là điểm đối xứng của \(H\) qua \(CD \Rightarrow I\)  là trung điểm của \(HK \Rightarrow K\left( { - \frac{1}{5}; - \frac{{13}}{5}} \right)\)

Phương trình đường thẳng đi qua \(C\left( {4; - 2} \right)\) và \(K\left( { - \frac{1}{5}; - \frac{{13}}{5}} \right)\) là:

\(\begin{array}{l}\frac{{x - 4}}{{ - \frac{1}{5} - 4}} = \frac{{y + 2}}{{ - \frac{{13}}{5} + 2}} \Leftrightarrow \frac{3}{5}\left( {x - 4} \right) = \frac{{21}}{5}\left( {y + 2} \right)\\ \Leftrightarrow x - 4 = 7y + 14 \Leftrightarrow x - 7y - 18 = 0\end{array}\)

Khi đó \(B\) là giao điểm của \(BH\) và \(BC \Rightarrow \) tọa độ điểm \(B\) là nghiệm của hệ phương trình:

\(\left\{ \begin{array}{l}x - y = 0\\x - 7y - 18 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  - 3\\y =  - 3\end{array} \right. \Rightarrow B\left( { - 3; - 3} \right).\)

Chọn  B.

Đáp án cần chọn là: B

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com