Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hình vuông \(ABCD\) tâm \(O\) cạnh \(a\). Gọi \(M\)là trung điểm của \(AB\), \(N\) là điểm đối

Câu hỏi số 345453:
Vận dụng cao

Cho hình vuông \(ABCD\) tâm \(O\) cạnh \(a\). Gọi \(M\)là trung điểm của \(AB\), \(N\) là điểm đối xứng với \(C\) qua \(D\). Hãy tính độ dài của vectơ \(\overrightarrow {MN} \).

Đáp án đúng là: A

Quảng cáo

Câu hỏi:345453
Phương pháp giải

\(\left| {\overrightarrow {MN} } \right| = MN\)

Giải chi tiết

Áp dụng định lý Pitago trong tam giác vuông \(MAD\) ta có

\(D{M^2} = A{M^2} + A{D^2} = {\left( {\frac{a}{2}} \right)^2} + {a^2} = \frac{{5{a^2}}}{4}\)\( \Rightarrow DM = \frac{{a\sqrt 5 }}{2}\)

Suy ra \(\left| {\overrightarrow {MD} } \right| = MD = \frac{{a\sqrt 5 }}{2}\).

Qua N kẻ đường thẳng song song với \(AD\) cắt\(AB\) tại \(P\).

Khi đó tứ giác \(ADNP\) là hình vuông và \(PM = PA + AM = a + \frac{a}{2} = \frac{{3a}}{2}\).

Áp dụng định lý Pitago trong tam giác vuông \(NPM\) ta có

\(M{N^2} = N{P^2} + P{M^2} = {a^2} + {\left( {\frac{{3a}}{2}} \right)^2} = \frac{{13{a^2}}}{4}\)\( \Rightarrow DM = \frac{{a\sqrt {13} }}{2}\)

Suy ra \(\left| {\overrightarrow {MN} } \right| = MN = \frac{{a\sqrt {13} }}{2}\).

Chọn  A.

Đáp án cần chọn là: A

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com