Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình hộp \(ABCD.A'B'C'D'\) (tham khảo hình vẽ). Hai điểm \(M,N\) lần lượt nằm trên hai cạnh

Câu hỏi số 349861:
Vận dụng

Cho hình hộp \(ABCD.A'B'C'D'\) (tham khảo hình vẽ). Hai điểm \(M,N\) lần lượt nằm trên hai cạnh \(AD,CC'\) sao cho \(AM = \dfrac{1}{2}AD,CN = \dfrac{1}{4}CC'\). Thiết diện của hình hộp cắt bởi mặt phẳng chứa đường thẳng \(MN\) và song song với mặt phẳng \(\left( {ACB'} \right)\) là

Đáp án đúng là: D

Quảng cáo

Câu hỏi:349861
Phương pháp giải

Chứng minh \(MN\) cắt mặt phẳng \(\left( {ACB'} \right)\) dẫn đến không có mặt phẳng cần tìm.

Giải chi tiết

Qua \(N\) kẻ \(NE//BC\left( {E \in BB'} \right)\), \(NE \cap B'C = K\).

Dễ thấy \(NE//BC//AD\) nên các điểm \(A,M,N,E\) cùng thuộc mặt phẳng \(\left( {ADNE} \right)\).

Lại có \(K = NE \cap CB'\)\( \Rightarrow K \in CB' \subset \left( {ACB'} \right) \Rightarrow AK \subset \left( {ACB'} \right)\)

Trong mặt phẳng \(\left( {ADMN} \right)\) gọi \(H = MN \cap AK \Rightarrow \left\{ \begin{array}{l}H \in MN\\H \in AK \subset \left( {ACB'} \right)\end{array} \right.\)\( \Rightarrow H = MN \cap \left( {ACB'} \right)\)

Do đó không có mặt phẳng nào chứa \(MN\) và song song \(\left( {ACB'} \right)\).

Vậy không có thiết diện cần tìm.

Đáp án cần chọn là: D

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com