Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình hộp \(ABCD.A'B'C'D'\) (tham khảo hình vẽ). Gọi \(M\) là trung điểm cạnh \(A'D'\) và \(\left(

Câu hỏi số 349862:
Vận dụng

Cho hình hộp \(ABCD.A'B'C'D'\) (tham khảo hình vẽ). Gọi \(M\) là trung điểm cạnh \(A'D'\) và \(\left( \alpha  \right)\) là mặt phẳng đi qua \(M\), song song với các đường thẳng \(BB',AC.\) Gọi \(T\) là giao điểm của đường thẳng \(BC\) và mặt phẳng \(\left( \alpha  \right)\). Tính tỉ số \(\dfrac{{TB}}{{TC}}.\)

Đáp án đúng là: C

Quảng cáo

Câu hỏi:349862
Phương pháp giải

+ Dựng mặt phẳng \(\left( \alpha  \right)\) dựa vào mối quan hệ song song với \(BB',AC\)

+ Từ đó tính tỉ số \(\dfrac{{TB}}{{TC}}\)

Giải chi tiết

Gọi \(N,E\) lần lượt là trung điểm của \(AD,DC\)

Ta có \(MN//AA'//BB'\) và \(NE//AC\) (do \(NE\) là đường trung bình của tam giác \(DAC\))

Suy ra \(\left( \alpha  \right) \equiv \left( {MNE} \right)\)

Trong \(\left( {ABCD} \right)\), kéo dài \(NE\) cắt \(BC\) tại \(T\). Suy ra \(ANTC\) là hình bình hành (do \(AN//TC;NT//AC\))

Do đó \(TC = AN = \dfrac{1}{2}AD = \dfrac{1}{2}BC\)

Ta có \(\left( {MNE} \right) \cap BC = \left\{ T \right\}\) nên \(\dfrac{{TB}}{{TC}} = \dfrac{{\dfrac{3}{2}BC}}{{\dfrac{1}{2}BC}} = 3\)

Đáp án cần chọn là: C

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com