Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Giải phương trình \(\sin 2x + 4\left( {\sin x - \cos x} \right) = 4\).

Câu hỏi số 356469:
Nhận biết

Giải phương trình \(\sin 2x + 4\left( {\sin x - \cos x} \right) = 4\).

Đáp án đúng là: D

Quảng cáo

Câu hỏi:356469
Phương pháp giải

Đặt \(t = \sin x - \cos x\,\,\left( { - \sqrt 2  \le t \le \sqrt 2 } \right) \Rightarrow \sin x\cos x = \dfrac{{1 - {t^2}}}{2}\).

Giải chi tiết

Đặt \(t = \sin x - \cos x\,\,\left( { - \sqrt 2  \le t \le \sqrt 2 } \right) \Rightarrow \sin x\cos x = \dfrac{{1 - {t^2}}}{2}\).

Cách giải:

\(\sin 2x + 4\left( {\sin x - \cos x} \right) = 4 \Leftrightarrow 2\sin x\cos x + 4\left( {\sin x - \cos x} \right) = 4\).

Đặt \(t = \sin x - \cos x\,\,\left( { - \sqrt 2  \le t \le \sqrt 2 } \right) \Rightarrow \sin x\cos x = \dfrac{{1 - {t^2}}}{2}\).

Khi đó phương trình trở thành \(1 - {t^2} + 4t = 4 \Leftrightarrow {t^2} - 4t + 3 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 1\,\,\,\left( {tm} \right)\\t = 3\,\,\left( {ktm} \right)\end{array} \right.\).

Với \(t = 1 \Rightarrow \sin x - \cos x = 1 \Leftrightarrow \sin \left( {x - \dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }}\).

\( \Leftrightarrow \left[ \begin{array}{l}x - \dfrac{\pi }{4} = \dfrac{\pi }{4} + k2\pi \\x - \dfrac{\pi }{4} = \dfrac{{3\pi }}{4} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{2} + k2\pi \\x = \pi  + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\).

Đáp án cần chọn là: D

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com