Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Phương trình \(\dfrac{{\sin 5x}}{{\sin x}} = 2\cos x\) có bao nhiêu nghiệm thuộc khoảng \(\left( {0;\pi }

Câu hỏi số 357807:
Vận dụng

Phương trình \(\dfrac{{\sin 5x}}{{\sin x}} = 2\cos x\) có bao nhiêu nghiệm thuộc khoảng \(\left( {0;\pi } \right)\)?

Đáp án đúng là: B

Quảng cáo

Câu hỏi:357807
Phương pháp giải

- Tìm ĐKXĐ.

- Biến đổi phương trình về dạng \(\sin x = \sin \alpha  \Leftrightarrow \left[ \begin{array}{l}x = \alpha  + k2\pi \\x = \pi  - \alpha  + k2\pi \end{array} \right.\).

Giải chi tiết

Điều kiện : \(\sin x \ne 0 \Leftrightarrow x \ne k\pi \).

Khi đó, phương trình \( \Leftrightarrow \sin 5x = 2\sin x\cos x \Leftrightarrow \sin 5x = \sin 2x\)

\( \Leftrightarrow \left[ \begin{array}{l}5x = 2x + k2\pi \\5x = \pi  - 2x + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}3x = k2\pi \\7x = \pi  + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{{k2\pi }}{3}\\x = \dfrac{\pi }{7} + \dfrac{{k2\pi }}{7}\end{array} \right.\)

Nếu \(x = \dfrac{{k2\pi }}{3}\) thì \(x \in \left( {0;\pi } \right) \Rightarrow 0 < \dfrac{{k2\pi }}{3} < \pi  \Leftrightarrow 0 < k < \dfrac{3}{2} \Rightarrow k = 1 \Rightarrow x = \dfrac{{2\pi }}{3}\left( {TM} \right)\).

Nếu \(x = \dfrac{\pi }{7} + \dfrac{{k2\pi }}{7}\) thì \(x \in \left( {0;\pi } \right) \Rightarrow 0 < \dfrac{\pi }{7} + \dfrac{{k2\pi }}{7} < \pi  \Leftrightarrow 0 < \pi  + k2\pi  < 7\pi  \Leftrightarrow  - \dfrac{1}{2} < k < 3\)

\( \Rightarrow k \in \left\{ {0;1;2} \right\} \Rightarrow x \in \left\{ {\dfrac{\pi }{7};\dfrac{{3\pi }}{7};\dfrac{{5\pi }}{7}} \right\}\).

Vậy phương trình đã cho có \(4\) nghiệm trong khoảng \(\left( {0;\pi } \right)\).

Đáp án cần chọn là: B

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com