Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

\(7\cos x = 4{\cos ^3}x + 4\sin 2x.\)

Câu hỏi số 377487:
Vận dụng

\(7\cos x = 4{\cos ^3}x + 4\sin 2x.\)

Đáp án đúng là: B

Quảng cáo

Câu hỏi:377487
Giải chi tiết

\(\begin{array}{l}7\cos x = 4{\cos ^3}x + 4\sin 2x \\ \Leftrightarrow 7\cos x - 4{\cos ^3}x - 8\sin x.\cos x = 0\\ \Leftrightarrow \cos x\left( {7 - 4{{\cos }^2}x - 8\sin x} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}\cos x = 0\\7 - 4{\cos ^2}x - 8\sin x = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{2} + k\pi \\7 - 4\left( {1 - {{\sin }^2}x} \right) - 8\sin x = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{2} + k\pi \\\sin x = \frac{3}{2}(L)\\\sin x = \frac{1}{2}(TM)\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{2} + k\pi \\x = \frac{\pi }{6} + k\pi \\x = \frac{{5\pi }}{6} + k\pi \end{array} \right.\left( {k \in Z} \right)\end{array}\)

Đáp án cần chọn là: B

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com