Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Giải phương trình \(2\sin 2x - \cos 2x = 7\sin x + 2\cos x - 4\) .

Câu hỏi số 378096:
Vận dụng

Giải phương trình \(2\sin 2x - \cos 2x = 7\sin x + 2\cos x - 4\) .

Đáp án đúng là: D

Quảng cáo

Câu hỏi:378096
Giải chi tiết

\(\begin{array}{l}\,\,\,\,\,\,2\sin 2x - \cos 2x = 7\sin x + 2\cos x - 4\\ \Leftrightarrow 4.\sin x.\cos x - 1 + 2{\sin ^2}x - 7\sin x - 2\cos x + 4 = 0\\ \Leftrightarrow \left( {4\sin x\cos x - 2\cos x} \right) + \left( {2{{\sin }^2}x - 7\sin x + 3} \right) = 0\\ \Leftrightarrow 2.\cos x.\left( {2\sin x - 1} \right) + \left( {2\sin x - 1} \right)\left( {\sin x - 3} \right) = 0\\ \Leftrightarrow \left( {2\sin x - 1} \right).\left( {2\cos x + \sin x - 3} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}\sin x = \frac{1}{2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\2\cos x + \sin x = 3\,\,\left( 2 \right)\end{array} \right.\end{array}\)

+) Xét \(\left( 1 \right) \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{6} + k2\pi \\x = \frac{{5\pi }}{6} + k2\pi \,\,\,\,\,\end{array} \right.\,\left( {k \in \mathbb{Z}} \right)\).

+) Xét \(\left( 2 \right):\,\,\sin x + 2\cos x = 3\).

Ta có: \(\sqrt {{A^2} + {B^2}}  = \sqrt {{1^2} + {2^2}}  = \sqrt 5  < \sqrt {{3^2}}  = 3 \Rightarrow \) Phương trình (2) vô nghiệm.

Vậy \(S = \left\{ {\frac{\pi }{6} + k2\pi ;\frac{{5\pi }}{6} + k2\pi ,k \in \mathbb{Z}} \right\}\).

Đáp án cần chọn là: D

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com