Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Chọn đáp án đúng nhất:

Chọn đáp án đúng nhất:

Trả lời cho các câu 1, 2 dưới đây:

Câu hỏi số 1:
Vận dụng

Tính :

a) \(\frac{5}{{\sqrt 5  - 1}} - \frac{5}{{\sqrt 5  + 1}};\)                                                         b) \(\sqrt {{{\left( {\sqrt 5  - 3} \right)}^2}}  - \sqrt {\frac{1}{5}} \)

Đáp án đúng là: C

Câu hỏi:378570
Phương pháp giải

a) Quy đồng mẫu số và rút gọn biểu thức.

b) Rút gọn căn bậc hai bằng công thức: \(\sqrt {{A^2}}  = \left[ \begin{array}{l}A\,\,\,\,khi\,\,\,\,A \ge 0\\ - A\,\,\,khi\,\,\,\,A < 0\end{array} \right.\) và \(\sqrt {\frac{1}{A}}  = \frac{{\sqrt A }}{A}\,\,\left( {A > 0} \right)\)

Giải chi tiết

\(\begin{array}{l}a)\,\frac{5}{{\sqrt 5  - 1}} - \frac{5}{{\sqrt 5  + 1}} = \frac{{5\left( {\sqrt 5  + 1} \right) - 5\left( {\sqrt 5  - 1} \right)}}{{\left( {\sqrt 5  + 1} \right)\left( {\sqrt 5  - 1} \right)}}\\ = \frac{{5\sqrt 5  + 5 - 5\sqrt 5  + 5}}{{5 - 1}} = \frac{{10}}{4} = \frac{5}{2}\end{array}\)            

 \(\begin{array}{l}b)\,\sqrt {{{\left( {\sqrt 5  - 3} \right)}^2}}  - \sqrt {\frac{1}{5}}  = \left| {\sqrt 5  - 3} \right| - \frac{{\sqrt 5 }}{5}\\ = 3 - \sqrt 5  - \frac{{\sqrt 5 }}{5} = \frac{{15 - 5\sqrt 5  - \sqrt 5 }}{5} = \frac{{15 - 6\sqrt 5 }}{5}\end{array}\)

Đáp án cần chọn là: C

Câu hỏi số 2:
Vận dụng

Giải các phương trình sau :

a) \(\sqrt {x - 1}  + \sqrt {9x - 9}  + \sqrt {4x - 4}  = 12;\)                                b) \(\sqrt {{x^2} - 5x}  - \sqrt {x - 5}  = 0\)

Đáp án đúng là: D

Câu hỏi:378571
Phương pháp giải

a) Biến đổi đưa về giải phương trình: \(\sqrt A  = B\left( {A \ge 0;B \ge 0} \right) \Leftrightarrow A = {B^2}\)

b) Giải phương trình: \(\sqrt A  = \sqrt B \,\,\,\left( {A \ge 0;\,\,\,B \ge 0} \right) \Leftrightarrow A = B\)

Giải chi tiết

a) \(\sqrt {x - 1}  + \sqrt {9x - 9}  + \sqrt {4x - 4}  = 12\)                 

ĐKXĐ: \(x - 1 \ge 0 \Leftrightarrow x \ge 1\)

\(\begin{array}{l}\sqrt {x - 1}  + \sqrt {9x - 9}  + \sqrt {4x - 4}  = 12\\ \Leftrightarrow \sqrt {x - 1}  + \sqrt {9\left( {x - 1} \right)}  + \sqrt {4\left( {x - 1} \right)}  = 12\\ \Leftrightarrow \sqrt {x - 1}  + 3\sqrt {x - 1}  + 2\sqrt {x - 1}  = 12\\ \Leftrightarrow 6\sqrt {x - 1}  = 12\\ \Leftrightarrow \sqrt {x - 1}  = 2\\ \Leftrightarrow x - 1 = 4\\ \Leftrightarrow x = 5\left( {tmdk} \right)\end{array}\)

Vậy \(x = 5.\)

b) \(\sqrt {{x^2} - 5x}  - \sqrt {x - 5}  = 0\)

ĐKXĐ: \(x - 5 \ge 0 \Leftrightarrow x \ge 5\)

\(\begin{array}{l}\sqrt {{x^2} - 5x}  - \sqrt {x - 5}  = 0\\ \Leftrightarrow \sqrt {{x^2} - 5x}  = \sqrt {x - 5} \\ \Leftrightarrow {x^2} - 5x = x - 5\\ \Leftrightarrow x\left( {x - 5} \right) - \left( {x - 5} \right) = 0\\ \Leftrightarrow \left( {x - 1} \right)\left( {x - 5} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 1 = 0\\x - 5 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\left( {ktm} \right)\\x = 5\left( {tm} \right)\end{array} \right.\end{array}\)

Vậy \(x = 5\).

Đáp án cần chọn là: D

Quảng cáo

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com