Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = {\log _2}{x^2}\). Khẳng định nào sau đây là sai?

Câu hỏi số 381244:
Thông hiểu

Cho hàm số \(y = {\log _2}{x^2}\). Khẳng định nào sau đây là sai?

Đáp án đúng là: C

Quảng cáo

Câu hỏi:381244
Phương pháp giải

Tính đạo hàm của hàm số để xác định tính đồng biến, nghịch biến của hàm số.

Tìm các tiệm cận đứng, tiệm cận ngang (nếu có) của đồ thị hàm số.

Giải chi tiết

TXĐ : \(D = \mathbb{R}\backslash \left\{ 0 \right\}\)

Ta có :

 \(\begin{array}{l}y = {\log _2}{x^2}\\ \Rightarrow y' = \dfrac{{\left( {{x^2}} \right)'}}{{{x^2}\ln 2}} = \dfrac{{2x}}{{{x^2}\ln 2}}\end{array}\)

Ta thấy \(y' > 0 \Leftrightarrow x > 0\) nên hàm số đồng biến trên \(\left( {0; + \infty } \right)\)

            \(y' < 0 \Leftrightarrow x < 0\) nên hàm số nghịch biến trên \(\left( { - \infty ;0} \right)\).

Lại có : \(\mathop {\lim }\limits_{x \to  \pm \infty } y =  + \infty \) nên hàm số đã cho không có tiệm cận ngang

Đồ thị hàm số có một tiệm cận đứng là \(x = 0\)

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com