Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Từ các chữ số \(0;1;2;3;4;5;6;7;8;9\) có thể lập được tất cả bao nhiêu số tự nhiên chẵn có

Câu hỏi số 381665:
Vận dụng

Từ các chữ số \(0;1;2;3;4;5;6;7;8;9\) có thể lập được tất cả bao nhiêu số tự nhiên chẵn có năm chữ số khác nhau và trong năm chữ số đó có đúng hai chữ số lẻ và hai chữ số lẻ này không đứng cạnh nhau.

Đáp án đúng là: B

Quảng cáo

Câu hỏi:381665
Phương pháp giải

- Đếm các số chẵn có \(5\) chữ số khác nhau mà có đúng hai chữ số lẻ.

- Đếm các số chẵn có \(5\) chữ số khác nhau mà có hai chữ số lẻ đứng cạnh nhau.

- Trừ các kết quả cho nhau ta dược đáp số.

Giải chi tiết

Gọi số có năm chữ số có dạng \(\overline {abcde} \).

TH1: \(e = 0\) có \(1\) cách chọn.

Chọn \(2\) chữ số lẻ và \(2\) chữ số chẵn và xếp vị trí cho chúng có \(C_5^2.C_4^2.4!\) cách chọn.

Do đó có  \(C_5^2.C_4^2.4!\) số.

TH2: \(e \in \left\{ {2;4;6;8} \right\}\) có \(4\) cách chọn.

+) Nếu \(a\) chẵn, \(a \ne 0,a \ne e\) thì có \(3\) cách chọn.

Số cách chọn 3 chữ số còn lại (\(1\) chữ số chẵn và \(2\) chữ số lẻ) và xếp vị trí cho chúng là \(C_3^1.C_5^2.3!\) cách chọn.

Do đó có \(3.C_3^1.C_5^2.3!\) số.

+) Nếu \(a\) lẻ thì có \(5\) cách chọn.

Số cách chọn 3 chữ số còn lại (\(2\) chữ số chẵn và \(1\) chữ số lẻ) và xếp vị trí cho chúng là \(C_4^2.C_4^1.3!\) cách chọn.

Do đó có \(5.C_4^2.C_4^1.3!\) số.

Khi đó số các số chẵn có \(5\) chữ số khác nhau mà chỉ có đúng \(2\) chữ số lẻ là \(C_5^2.C_4^2.4! + 4.\left( {3.C_3^1.C_5^2.3! + 5.C_4^2.C_4^1.3!} \right) = 6480\) số.

Ta tính số các số chẵn có \(5\) chữ số khác nhau chỉ có \(2\) chữ số lẻ mà chúng đứng cạnh nhau.

Coi hai chữ số lẻ đứng cạnh nhau là một chữ số \(A\), có \(A_5^2\) cách chọn và sắp xếp vị trí của hai chữ số trong \(A\).

Số có dạng \(\overline {abcd} \) với \(a,b,c,d \in \left\{ {A;0;2;4;6;8} \right\}\).

+) Nếu \(a = A\) thì có \(A_5^3\) cách chọn \(b,c,d\).

+) Nếu \(a \ne A,a \ne 0\) thì có \(4\) cách chọn.

\(A\) có thể đứng ở vị trí \(b\) hoặc \(c\) nên có \(2\) cách xếp.

Có \(A_4^2\) cách chọn và sắp xếp hai chữ số còn lại.

Do đó có \(A_5^2\left( {A_5^3 + 4.2.A_4^2} \right) = 3120\)

Vậy có \(6480 - 3120 = 3360\) số.

Đáp án cần chọn là: B

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com