Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Nếu \(2A_n^4 = 3A_{n - 1}^4\) thì \(n\) bằng:

Câu hỏi số 388018:
Vận dụng

Nếu \(2A_n^4 = 3A_{n - 1}^4\) thì \(n\) bằng:

Đáp án đúng là: B

Quảng cáo

Câu hỏi:388018
Giải chi tiết

\(2A_n^4 = 3A_{n - 1}^4\)  \(\left( {n \ge 5;\,\,n \in N} \right)\)

\( \Leftrightarrow 2\dfrac{{n!}}{{\left( {n - 4} \right)!}} = 3\dfrac{{\left( {n - 1} \right)!}}{{\left( {n - 5} \right)!}}\)

\( \Leftrightarrow 2n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right) - 3\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right) = 0\)

\( \Leftrightarrow \left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left[ {2n - 3\left( {n - 4} \right)} \right] = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}n = 1\,\,\,\,\left( {ktm} \right)\\n = 2\,\,\,\left( {ktm} \right)\\n = 3\,\,\,\,\left( {ktm} \right)\\2n - 3n + 12 = 0\end{array} \right. \Leftrightarrow n = 12\,\,\left( {tm} \right)\)

Đáp án cần chọn là: B

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com