Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tứ diện \(ABCD\). Gọi \(M\) là trung điểm \(AB\) và \(G\) là trọng tâm \(\Delta BCD\). Đặt

Câu hỏi số 390272:
Vận dụng

Cho tứ diện \(ABCD\). Gọi \(M\) là trung điểm \(AB\) và \(G\) là trọng tâm \(\Delta BCD\). Đặt \(\overrightarrow {AB}  = \overrightarrow b ,\,\,\overrightarrow {AC}  = \overrightarrow c ,\,\,\overrightarrow {AD}  = \overrightarrow d \). Hãy phân tích vectơ \(\overrightarrow {MG} \) theo \(\overrightarrow b ,\,\,\overrightarrow c ,\,\,\overrightarrow d \).

Đáp án đúng là: A

Quảng cáo

Câu hỏi:390272
Phương pháp giải

Sử dụng công thức trọng tâm: Cho tam giác \(BCD\) có trọng tâm \(G\). Với mọi điểm \(M\) ta luôn có: \(\overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD}  = 3\overrightarrow {MG} \).

Giải chi tiết

Vì \(G\) là trọng tâm tam giác \(BCD\) nên ta có:

\(\begin{array}{l}\,\,\,\,\,\,\overrightarrow {MG}  = \dfrac{1}{3}\left( {\overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD} } \right)\\ \Leftrightarrow \overrightarrow {MG}  = \dfrac{1}{3}\left( {\dfrac{1}{2}\overrightarrow {AB}  - \overrightarrow {CM}  - \overrightarrow {DM} } \right)\\ \Leftrightarrow \overrightarrow {MG}  = \dfrac{1}{6}\overrightarrow b  - \dfrac{1}{3}.\dfrac{1}{2}\left( {\overrightarrow {CA}  + \overrightarrow {CB} } \right) - \dfrac{1}{3}.\dfrac{1}{2}\left( {\overrightarrow {DA}  + \overrightarrow {DB} } \right)\\ \Leftrightarrow \overrightarrow {MG}  = \dfrac{1}{6}\overrightarrow b  - \dfrac{1}{6}\left( {\overrightarrow {CA}  + \overrightarrow {CA}  + \overrightarrow {AB} } \right) - \dfrac{1}{6}\left( {\overrightarrow {DA}  + \overrightarrow {DA}  + \overrightarrow {AB} } \right)\\ \Leftrightarrow \overrightarrow {MG}  = \dfrac{1}{6}\overrightarrow b  - \dfrac{1}{6}\left( { - 2\overrightarrow c  + \overrightarrow b } \right) - \dfrac{1}{6}\left( { - 2\overrightarrow d  + \overrightarrow b } \right)\\ \Leftrightarrow \overrightarrow {MG}  = \dfrac{1}{6}\overrightarrow b  + \dfrac{1}{3}\overrightarrow c  - \dfrac{1}{6}\overrightarrow b  + \dfrac{1}{3}\overrightarrow d  - \dfrac{1}{6}\overrightarrow b \\ \Leftrightarrow \overrightarrow {MG}  =  - \dfrac{1}{6}\overrightarrow b  + \dfrac{1}{3}\overrightarrow c  + \dfrac{1}{3}\overrightarrow d \\ \Leftrightarrow \overrightarrow {MG}  =  - \dfrac{1}{6}\left( {\overrightarrow b  - 2\overrightarrow c  - 2\overrightarrow d } \right)\end{array}\)

Vậy \(\overrightarrow {MG}  =  - \dfrac{1}{6}\left( {\overrightarrow b  - 2\overrightarrow c  - 2\overrightarrow d } \right)\).

Đáp án cần chọn là: A

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com