Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tứ diện \(ABCD\) có \(AB = CD = a\), \(AC = BD = b\), \(AD = BC = c\). Tính góc giữa hai đường thẳng

Câu hỏi số 391351:
Vận dụng cao

Cho tứ diện \(ABCD\) có \(AB = CD = a\), \(AC = BD = b\), \(AD = BC = c\). Tính góc giữa hai đường thẳng \(AC\) và \(BD\).

Đáp án đúng là: A

Quảng cáo

Câu hỏi:391351
Phương pháp giải

- Sử dụng công thức tính độ dài đường trung tuyến \(m_a^2 = \dfrac{{{b^2} + {c^2}}}{2} - \dfrac{{{a^2}}}{4}\).

- Áp dụng định lí Cô-sin trong tam giác: \(\cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\).

Giải chi tiết

Gọi \(M,\,\,N,\,\,P\) lần lượt là trung điểm của \(AB,\,\,CD,\,\,AD\).

Ta có: \(PM,\,\,PN\) lần lượt là các đường trung bình của tam giác \(ABD\) và \(ACD\) nên \(MP\parallel BD\) và \(PN\parallel AC\).

\( \Rightarrow \angle \left( {AC;BD} \right) = \angle \left( {PN;PM} \right)\).

Áp dụng công thức tính độ dài đường trung tuyến ta có:

\(\begin{array}{l}C{M^2} = \dfrac{{C{A^2} + C{B^2}}}{2} - \dfrac{{A{B^2}}}{4} = \dfrac{{2\left( {{b^2} + {c^2}} \right) - {a^2}}}{4}\\D{M^2} = \dfrac{{D{A^2} + D{B^2}}}{2} - \dfrac{{A{B^2}}}{4} = \dfrac{{2\left( {{c^2} + {b^2}} \right) - {a^2}}}{4}\\M{N^2} = \dfrac{{M{C^2} + M{D^2}}}{2} - \dfrac{{C{D^2}}}{4} = \dfrac{{2\left( {{b^2} + {c^2}} \right) - {a^2}}}{4} - \dfrac{{{a^2}}}{4} = \dfrac{{{b^2} + {c^2} - {a^2}}}{2}\end{array}\)

Áp dụng định lí Cô-sin trong tam giác \(PMN\) ta có:

\(\begin{array}{l}\cos \angle MPN = \dfrac{{P{M^2} + P{N^2} - M{N^2}}}{{2PM.PN}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{{{{\left( {\dfrac{b}{2}} \right)}^2} + {{\left( {\dfrac{b}{2}} \right)}^2} - \dfrac{{{b^2} + {c^2} - {a^2}}}{2}}}{{2\dfrac{b}{2}.\dfrac{b}{2}}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{{\left( {{a^2} - {c^2}} \right)}}{{{b^2}}}\end{array}\) 

Vậy \(\angle \left( {AC;BD} \right) = \arccos \left| {\dfrac{{\left( {{a^2} - {c^2}} \right)}}{{{b^2}}}} \right|\).

Đáp án cần chọn là: A

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com