Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho tứ diện \(ABCD\) có \(AB = CD = a\), \(AC = BD = b\), \(AD = BC = c\). Tính góc giữa hai đường thẳng \(AC\) và \(BD\).

Câu 391351: Cho tứ diện \(ABCD\) có \(AB = CD = a\), \(AC = BD = b\), \(AD = BC = c\). Tính góc giữa hai đường thẳng \(AC\) và \(BD\).

A. \(\angle \left( {AC;BD} \right) = \arccos \left| {\dfrac{{{a^2} - {c^2}}}{{{b^2}}}} \right|\)

B. \(\angle \left( {AC;BD} \right) = \arccos \left| {\dfrac{{2\left( {{a^2} + {c^2}} \right)}}{{{b^2}}}} \right|\)

C. \(\angle \left( {AC;BD} \right) = \arccos \left| {\dfrac{{2\left( {{a^2} - {c^2}} \right)}}{{3{b^2}}}} \right|\)

D. \(\angle \left( {AC;BD} \right) = \arccos \left| {\dfrac{{2\left( {{a^2} - {c^2}} \right)}}{{{b^2}}}} \right|\)

Câu hỏi : 391351

Phương pháp giải:

- Sử dụng công thức tính độ dài đường trung tuyến \(m_a^2 = \dfrac{{{b^2} + {c^2}}}{2} - \dfrac{{{a^2}}}{4}\).


- Áp dụng định lí Cô-sin trong tam giác: \(\cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\).

  • Đáp án : A
    (1) bình luận (0) lời giải

    Giải chi tiết:

    Gọi \(M,\,\,N,\,\,P\) lần lượt là trung điểm của \(AB,\,\,CD,\,\,AD\).

    Ta có: \(PM,\,\,PN\) lần lượt là các đường trung bình của tam giác \(ABD\) và \(ACD\) nên \(MP\parallel BD\) và \(PN\parallel AC\).

    \( \Rightarrow \angle \left( {AC;BD} \right) = \angle \left( {PN;PM} \right)\).

    Áp dụng công thức tính độ dài đường trung tuyến ta có:

    \(\begin{array}{l}C{M^2} = \dfrac{{C{A^2} + C{B^2}}}{2} - \dfrac{{A{B^2}}}{4} = \dfrac{{2\left( {{b^2} + {c^2}} \right) - {a^2}}}{4}\\D{M^2} = \dfrac{{D{A^2} + D{B^2}}}{2} - \dfrac{{A{B^2}}}{4} = \dfrac{{2\left( {{c^2} + {b^2}} \right) - {a^2}}}{4}\\M{N^2} = \dfrac{{M{C^2} + M{D^2}}}{2} - \dfrac{{C{D^2}}}{4} = \dfrac{{2\left( {{b^2} + {c^2}} \right) - {a^2}}}{4} - \dfrac{{{a^2}}}{4} = \dfrac{{{b^2} + {c^2} - {a^2}}}{2}\end{array}\)

    Áp dụng định lí Cô-sin trong tam giác \(PMN\) ta có:

    \(\begin{array}{l}\cos \angle MPN = \dfrac{{P{M^2} + P{N^2} - M{N^2}}}{{2PM.PN}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{{{{\left( {\dfrac{b}{2}} \right)}^2} + {{\left( {\dfrac{b}{2}} \right)}^2} - \dfrac{{{b^2} + {c^2} - {a^2}}}{2}}}{{2\dfrac{b}{2}.\dfrac{b}{2}}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{{\left( {{a^2} - {c^2}} \right)}}{{{b^2}}}\end{array}\) 

    Vậy \(\angle \left( {AC;BD} \right) = \arccos \left| {\dfrac{{\left( {{a^2} - {c^2}} \right)}}{{{b^2}}}} \right|\).

    Chọn A.

    Lời giải sai Bình thường Khá hay Rất Hay

Hỗ trợ - HƯớng dẫn

  • 024.7300.7989
  • 1800.6947free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com