Trong mặt phẳng với hệ tọa độ \(Oxy\), cho tam giác ABC với \(A\left( {1;2} \right),B\left( {0;1}
Trong mặt phẳng với hệ tọa độ \(Oxy\), cho tam giác ABC với \(A\left( {1;2} \right),B\left( {0;1} \right),C\left( { - 2;1} \right).\)
Trả lời cho các câu 1, 2, 3 dưới đây:
Viết phương trình đường thẳng \(d\) đi qua hai điểm \(A\) và \(B.\)
Đáp án đúng là: C
Phương trình đường thẳng \(\Delta \) có vecto pháp tuyến \(\overrightarrow n \left( {a;\,\,b} \right)\) và đi qua điểm \(M\left( {{x_M};\,\,{y_M}} \right)\) có dạng: \(\Delta :\,\,\,a\left( {x - {x_M}} \right) + b\left( {y - {y_M}} \right) = 0.\)
Đáp án cần chọn là: C
Tính khoảng cách từ điểm \(C\) đến đường thẳng \(d\). Viết phương trình đường tròn tâm \(C\) cắt đường thẳng \(d\) tại hai điểm \(E,\,\,F\) biết \(EF = 2\sqrt 2 .\)
Đáp án đúng là: A
Cho điểm \(M\left( {{x_0};\,\,{y_0}} \right)\) và đường thẳng \(\Delta :\,\,\,ax + by + c = 0\) ta có: \(d\left( {M;\,\,\Delta } \right) = \frac{{\left| {a{x_0} + b{y_0} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}.\)
Sau đó dùng định lý Py-ta-go để tìm bán kính.
Đáp án cần chọn là: A
Tìm điểm \(M\) trên đường thẳng \(\Delta :x + y + 2 = 0\) sao cho \(\left| {\overrightarrow {MA} + 2\overrightarrow {MB} + \overrightarrow {MC} } \right|\) đạt giá trị nhỏ nhất.
Đáp án đúng là: A
Gọi \(I\left( {m;\,\,n} \right)\) là điểm thỏa mãn \(\overrightarrow {IA} + 2\overrightarrow {IB} + \overrightarrow {IC} = \overrightarrow 0 \), từ đó tìm tọa độ điểm \(I\) sau đó tìm tọa độ điểm \(M.\)
Đáp án cần chọn là: A
Quảng cáo
>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












