Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tính \(I = \lim \left[ {n\left( {\sqrt {{n^2} + 2}  - \sqrt {{n^2} - 1} } \right)} \right]\).

Câu hỏi số 400769:
Thông hiểu

Tính \(I = \lim \left[ {n\left( {\sqrt {{n^2} + 2}  - \sqrt {{n^2} - 1} } \right)} \right]\).

Đáp án đúng là: C

Quảng cáo

Câu hỏi:400769
Phương pháp giải

- Nhân liên hợp khử dạng \(\infty  - \infty \).

- Chia cả tử và mẫu cho \(n\).

Giải chi tiết

\(\begin{array}{l}I = \lim \left[ {n\left( {\sqrt {{n^2} + 2}  - \sqrt {{n^2} - 1} } \right)} \right]\\I = \lim \dfrac{{n\left( {{n^2} + 2 - {n^2} + 1} \right)}}{{\sqrt {{n^2} + 2}  + \sqrt {{n^2} - 1} }}\\I = 3\lim \dfrac{n}{{\sqrt {{n^2} + 2}  + \sqrt {{n^2} - 1} }}\\I = 3\lim \dfrac{1}{{\sqrt {1 + \dfrac{2}{{{n^2}}}}  + \sqrt {1 - \dfrac{1}{{{n^2}}}} }}\\I = 3\lim \dfrac{1}{{1 + 1}} = \dfrac{3}{2}\end{array}\)

Đáp án cần chọn là: C

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com