Trong không gian \(Oxyz\), mặt cầu tâm \(I\left( {1;2; - 1} \right)\) và cắt mặt phẳng \(\left( P
Trong không gian \(Oxyz\), mặt cầu tâm \(I\left( {1;2; - 1} \right)\) và cắt mặt phẳng \(\left( P \right):\,\,2x - y + 2z - 1 = 0\) theo một đường tròn có bán kính bằng \(\sqrt 8 \) có phương trình là:
Đáp án đúng là: B
Quảng cáo
- Khoảng cách từ \(M\left( {{x_0};{y_0};{z_0}} \right)\) đến \(\left( P \right):\,\,Ax + By + Cz + D = 0\) là: \(d\left( {M;\left( P \right)} \right) = \dfrac{{\left| {A{x_0} + B{y_0} + C{z_0} + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\).
- Mặt cầu \(\left( S \right)\) tâm \(I\), bán kính \(R\) cắt \(\left( P \right)\) theo một đường tròn bán kính \(r\) thì \({R^2} = {d^2} + {r^2}\) trong đó \(d = d\left( {I;\left( P \right)} \right)\).
- Mặt cầu tâm \(I\left( {{x_0};{y_0};{z_0}} \right)\), bán kính \(R\) có phương trình \({\left( {x - {x_0}} \right)^2} + {\left( {y - {y_0}} \right)^2} + {\left( {z - {z_0}} \right)^2} = {R^2}.\)
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












