Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(f\left( x \right) = \frac{1}{3}{x^3} - {x^2} + mx + 5\) với \(m\) là tham số. Tìm tất cả các

Câu hỏi số 402481:
Vận dụng

Cho hàm số \(f\left( x \right) = \frac{1}{3}{x^3} - {x^2} + mx + 5\) với \(m\) là tham số. Tìm tất cả các giá trị của tham số \(m\) để \(f'\left( x \right) \ge 0\) với mọi \(x \in \mathbb{R}.\)

Đáp án đúng là: A

Quảng cáo

Câu hỏi:402481
Phương pháp giải

- Tìm đạo hàm của hàm số. Sử dụng công thức \(\left( {{x^n}} \right)' = n{x^{n - 1}}\).

- Tam thức bậc hai \(f\left( x \right) = a{x^2} + bx + c \ge 0\,\,\forall x \in \mathbb{R} \Leftrightarrow \left\{ \begin{array}{l}a > 0\\\Delta  \le 0\end{array} \right.\).

Giải chi tiết

TXĐ: \(D = \mathbb{R}\).

Ta có \(f'\left( x \right) = {x^2} - 2x + m\)

\(\begin{array}{l}f'\left( x \right) \ge 0\,\,\,\forall x \in \mathbb{R}\\ \Leftrightarrow {x^2} - 2x + m \ge 0\,\,\,\forall x \in \mathbb{R}\\ \Leftrightarrow \left\{ \begin{array}{l}a = 1 > 0\\\Delta ' = 1 - m \le 0\end{array} \right.\\ \Leftrightarrow m \ge 1.\end{array}\)

Chú ý khi giải

Phân biệt \(f'\left( x \right) \ge 0\) và \(f'\left( x \right) \ge 0\,\,\forall x \in \mathbb{R}\).

Đáp án cần chọn là: A

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com