Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông tâm \(O\), cạnh \(a\). Đường thẳng \(SO\)

Câu hỏi số 403431:
Thông hiểu

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông tâm \(O\), cạnh \(a\). Đường thẳng \(SO\) vuông góc với mặt phẳng đáy và \(SO = \dfrac{{a\sqrt 3 }}{2}\). Tính góc giữa \(\left( {SCD} \right)\) và \(\left( {ABCD} \right)\).

Đáp án đúng là: C

Quảng cáo

Câu hỏi:403431
Phương pháp giải

- Góc giữa hai mặt phẳng là góc giữa hai đường thẳng lần lượt thuộc hai mặt phẳng và cùng vuông góc với giao tuyến.

- Sử dụng tỉ số lượng giác của góc nhọn trong tam giác vuông để tính góc.

Giải chi tiết

Gọi \(M\) là trung điểm của \(CD\) ta có \(OM\) là đường trung bình của tam giác \(ACD\) nên \(OM\parallel AD \Rightarrow OM \bot CD\) và \(OM = \dfrac{1}{2}AD = \dfrac{a}{2}\).

Ta có: \(\left\{ \begin{array}{l}CD \bot OM\\CD \bot SO\end{array} \right. \Rightarrow CD \bot \left( {SOM} \right) \Rightarrow CD \bot SM\).

\(\left\{ \begin{array}{l}\left( {SCD} \right) \cap \left( {ABCD} \right) = CD\\\left( {SCD} \right) \supset SM \bot CD\\\left( {ABCD} \right) \supset OM \bot CD\end{array} \right.\) \( \Rightarrow \angle \left( {\left( {SCD} \right);\left( {ABCD} \right)} \right) = \angle \left( {SM;OM} \right) = \angle SMO\).

Xét \(\Delta SOM\) vuông tại \(O\) có: \(\tan \angle SMO = \dfrac{{SO}}{{OM}} = \dfrac{{\dfrac{{a\sqrt 3 }}{2}}}{{\dfrac{a}{2}}} = \sqrt 3 \) \( \Rightarrow \angle SMO = {60^0}\).

Vậy \(\angle \left( {\left( {SCD} \right);\left( {ABCD} \right)} \right) = {60^0}\).

Đáp án cần chọn là: C

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com