Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm giá trị thực của tham số m để hàm số \(y = f(x) = \left\{ {\begin{array}{*{20}{c}}{\dfrac{{{x^2} -

Câu hỏi số 404033:
Vận dụng

Tìm giá trị thực của tham số m để hàm số \(y = f(x) = \left\{ {\begin{array}{*{20}{c}}{\dfrac{{{x^2} - x - 2}}{{x - 2}}\,\,khi\,x \ne 2}\\{m\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,x = 2}\end{array}} \right.\) liên tục tại \(x = 2\).

Đáp án đúng là: A

Quảng cáo

Câu hỏi:404033
Phương pháp giải

- Tính \(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\).

- Hàm số \(y = f\left( x \right)\) liên tục trên tại \(x = 2\) khi và chỉ khi \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = f\left( 2 \right)\).

Giải chi tiết

Ta có:

\(\begin{array}{l}\,\,\,\,\mathop {\lim }\limits_{x \to 2} f\left( x \right) = \mathop {\lim }\limits_{x \to 2} \dfrac{{{x^2} - x - 2}}{{x - 2}}\\ = \mathop {\lim }\limits_{x \to 2} \dfrac{{\left( {x - 2} \right)\left( {x + 1} \right)}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \left( {x + 1} \right) = 3\end{array}\)

Lại có \(f\left( 2 \right) = m\).

Do đó để hàm số liên tục tại \(x = 2\) khi và chỉ khi \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = f\left( 2 \right)\)\( \Leftrightarrow m = 3\).

Đáp án cần chọn là: A

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com