Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Đạo hàm của hàm số \(y = {\left( {{x^3} - 2{x^2}} \right)^{2019}}\)  là:

Câu hỏi số 404035:
Vận dụng

Đạo hàm của hàm số \(y = {\left( {{x^3} - 2{x^2}} \right)^{2019}}\)  là:

Đáp án đúng là: C

Quảng cáo

Câu hỏi:404035
Phương pháp giải

Tính đạo hàm của hàm hợp: \(\left( {{u^n}} \right)' = n.{u^{n - 1}}.u'\).

Giải chi tiết

Ta có:

\(\begin{array}{l}y = {\left( {{x^3} - 2{x^2}} \right)^{2019}}\\ \Rightarrow y' = 2019.{\left( {{x^3} - 2{x^2}} \right)^{2018}}.\left( {{x^3} - 2{x^2}} \right)'\\\,\,\,\,\,\,\,y' = 2019.{\left( {{x^3} - 2{x^2}} \right)^{2018}}.\left( {3{x^2} - 4x} \right)\end{array}\)

Lại có \(f\left( 2 \right) = m\).

Do đó để hàm số liên tục tại \(x = 2\) khi và chỉ khi \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = f\left( 2 \right)\)\( \Leftrightarrow m = 3\).

Đáp án cần chọn là: C

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com