Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(f\left( x \right)\) có \(f\left( 0 \right) = 0\) và \(f'\left( x \right) = \cos x.{\cos

Câu hỏi số 405058:
Vận dụng cao

Cho hàm số \(f\left( x \right)\) có \(f\left( 0 \right) = 0\) và \(f'\left( x \right) = \cos x.{\cos ^2}2x,\,\forall \,x \in \,\mathbb{R}.\). Khi đó \(\int\limits_0^\pi  {f\left( x \right)dx} \) bằng

Đáp án đúng là: C

Quảng cáo

Câu hỏi:405058
Phương pháp giải

Ta có: \(f\left( x \right) = \int {f'\left( x \right)dx.} \)

Từ đó ta tính tích phân cần tìm.

Chú ý công thức biến đổi lượng giác \(\cos a\cos b = \dfrac{1}{2}\left( {\cos \left( {a + b} \right) + \cos \left( {a - b} \right)} \right)\)

Giải chi tiết

Ta có: \(f\left( x \right) = \int {f'\left( x \right)dx.} \)

\(\begin{array}{l} \Leftrightarrow f\left( x \right) = \int {\left( {\cos x{{\cos }^2}2x} \right)dx} \\ \Leftrightarrow f\left( x \right) = \int {\left( {\cos x.\dfrac{{1 + \cos 4x}}{2}} \right)dx} \\ \Leftrightarrow f\left( x \right) = \dfrac{1}{2}\int {\left( {\cos x + \cos x\cos 4x} \right)dx} \\ \Leftrightarrow f\left( x \right) = \dfrac{1}{2}\int {\cos xdx}  + \dfrac{1}{2}\int {\dfrac{1}{2}\left( {\cos 5x + \cos 3x} \right)dx} \\ \Leftrightarrow f\left( x \right) = \dfrac{1}{2}\sin x + \dfrac{1}{4}\left( {\dfrac{{\sin 5x}}{5} + \dfrac{{\sin 3x}}{3}} \right) + C\\ \Leftrightarrow f\left( x \right) = \dfrac{1}{2}\sin x + \dfrac{1}{{20}}\sin 5x + \dfrac{1}{{12}}\sin 3x + C\end{array}\)

Suy ra \(f\left( x \right) = \dfrac{1}{2}\sin x + \dfrac{1}{{20}}\sin 5x + \dfrac{1}{{12}}\sin 3x + C\)

Mà \(f\left( 0 \right) = 0 \Rightarrow C = 0\)

Do đó \(f\left( x \right) = \dfrac{1}{2}\sin x + \dfrac{1}{{20}}\sin 5x + \dfrac{1}{{12}}\sin 3x\)

\(\begin{array}{l} \Rightarrow \int\limits_0^\pi  {f\left( x \right)dx}  = \int\limits_0^\pi  {\left( {\dfrac{1}{2}\sin x + \dfrac{1}{{20}}\sin 5x + \dfrac{1}{{12}}\sin 3x} \right)dx} \\ = \left. {\left( { - \dfrac{1}{2}\cos x + \dfrac{1}{{20}}.\dfrac{{ - \cos 5x}}{5} + \dfrac{1}{{12}}.\dfrac{{ - \cos 3x}}{3}} \right)} \right|_0^\pi \\ = \left. {\left( { - \dfrac{1}{2}\cos x - \dfrac{1}{{100}}\cos 5x - \dfrac{1}{{36}}\cos 3x} \right)} \right|_0^\pi \\ =  - \dfrac{1}{2}\left( { - 1 - 1} \right) - \dfrac{1}{{100}}\left( { - 1 - 1} \right) - \dfrac{1}{{36}}\left( { - 1 - 1} \right)\\ = \dfrac{{242}}{{225}}.\end{array}\)

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com