Cho \(\left( {\cos 2x - \tan 3x} \right)' = a\sin 2x + \dfrac{b}{{{{\cos }^2}3x}}\). Tính \(S = a - b\)?
Cho \(\left( {\cos 2x - \tan 3x} \right)' = a\sin 2x + \dfrac{b}{{{{\cos }^2}3x}}\). Tính \(S = a - b\)?
Đáp án đúng là: C
Quảng cáo
- Áp dụng công thức tính đạo hàm hàm lượng giác: \(\left( {\cos kx} \right)' = - k\sin kx\), \(\left( {\tan kx} \right)' = \dfrac{k}{{{{\cos }^2}kx}}\).
- Đồng nhất hệ số tìm a, b và tính S.
Đáp án cần chọn là: C
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












