Có bao nhiêu giá trị nguyên của \(m\) để đường thẳng \(y = mx + m + 3\) cắt đồ thị hàm số
Có bao nhiêu giá trị nguyên của \(m\) để đường thẳng \(y = mx + m + 3\) cắt đồ thị hàm số \(y = {x^3} - 3x + 1\) tại ba điểm phân biệt?
Đáp án đúng là: A
Quảng cáo
Số giao điểm của đường thẳng \(d:\,\,\,\,y = mx + m + 3\) và đồ thị hàm số \(\left( C \right):\,\,\,y = {x^3} - 3x + 1\) là số nghiệm của phương trình hoành độ giao điểm (*) của hai đồ thị.
\(d\) cắt \(\left( C \right)\) tại ba điểm phân biệt \( \Leftrightarrow \left( * \right)\) có ba nghiệm phân biệt.
Đáp án cần chọn là: A
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












