Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Có bao nhiêu giá trị nguyên của \(m\) để đường thẳng \(y = mx + m + 3\) cắt đồ thị hàm số

Câu hỏi số 408221:
Thông hiểu

Có bao nhiêu giá trị nguyên của \(m\) để đường thẳng \(y = mx + m + 3\) cắt đồ thị hàm số \(y = {x^3} - 3x + 1\) tại ba điểm phân biệt?

Đáp án đúng là: A

Quảng cáo

Câu hỏi:408221
Phương pháp giải

Số giao điểm của đường thẳng \(d:\,\,\,\,y = mx + m + 3\)  và đồ thị hàm số \(\left( C \right):\,\,\,y = {x^3} - 3x + 1\) là số nghiệm của phương trình hoành độ giao điểm (*) của hai đồ thị.

\(d\) cắt \(\left( C \right)\) tại ba điểm phân biệt \( \Leftrightarrow \left( * \right)\) có ba nghiệm phân biệt.

Giải chi tiết

Phương trình hoành độ giao điểm của đường thẳng \(d:\,\,\,\,y = mx + m + 3\)  và đồ thị hàm số \(\left( C \right):\,\,\,y = {x^3} - 3x + 1\) là: \({x^3} - 3x + 1 = mx + m + 3\) \( \Leftrightarrow {x^3} - \left( {m + 3} \right)x - m - 2 = 0\,\,\,\,\left( * \right)\)

\(\begin{array}{l} \Leftrightarrow {x^3} + {x^2} - {x^2} - x - \left( {m + 2} \right)x - m - 2 = 0\\ \Leftrightarrow {x^2}\left( {x + 1} \right) - x\left( {x + 1} \right) - \left( {m + 2} \right)\left( {x + 1} \right) = 0\\ \Leftrightarrow \left( {x + 1} \right)\left( {{x^2} - x - m - 2} \right) = 0\,\,\,\,\\ \Leftrightarrow \left[ \begin{array}{l}x + 1 = 0\\{x^2} - x - m - 2 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x =  - 1\\g\left( x \right) = {x^2} - x - m - 2 = 0\,\,\,\,\,\left( 1 \right)\end{array} \right.\end{array}\)

Số giao điểm của đường thẳng \(d:\,\,\,\,y = mx + m + 3\)  và đồ thị hàm số \(\left( C \right):\,\,\,y = {x^3} - 3x + 1\) là số nghiệm của phương trình hoành độ giao điểm (*) của hai đồ thị.

\( \Rightarrow \left( * \right)\) có ba nghiệm phân biệt \( \Leftrightarrow \left( 1 \right)\) có hai nghiệm phân biệt \( \ne  - 1\)

\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}\Delta  > 0\\g\left( { - 1} \right) \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}1 + 4\left( {m + 2} \right) > 0\\{\left( { - 1} \right)^2} - \left( { - 1} \right) - m - 2 \ne 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}1 + 4m + 8 > 0\\1 + 1 - m - 2 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4m + 9 > 0\\m \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m >  - \dfrac{9}{4}\\m \ne 0\end{array} \right.\end{array}\)

\( \Rightarrow \) Có vô số giá trị nguyên của \(m\) thỏa mãn bài toán.

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com