Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Có bao giá trị thực của \(m\) để bất phương trình \({4^x} - \left( {m + 1} \right){2^x} + m < 0\)

Câu hỏi số 408222:
Vận dụng

Có bao giá trị thực của \(m\) để bất phương trình \({4^x} - \left( {m + 1} \right){2^x} + m < 0\) vô nghiệm?

Đáp án đúng là: C

Quảng cáo

Câu hỏi:408222
Phương pháp giải

Đặt \({2^x} = t\,\,\left( {t > 0} \right).\)

Khi đó bất phương trình đã cho \( \Leftrightarrow {t^2} - \left( {m + 1} \right)t + m < 0\,\,\,\left( * \right).\)

Bất phương trình đã cho vô nghiệm \( \Leftrightarrow \left( * \right)\) vô nghiệm hoặc có nghiệm \(t \le 0.\)

Giải chi tiết

\({4^x} - \left( {m + 1} \right){2^x} + m < 0\,\,\,\,\left( 1 \right)\)

Đặt \({2^x} = t\,\,\left( {t > 0} \right).\)

Khi đó bất phương trình đã cho \( \Leftrightarrow {t^2} - \left( {m + 1} \right)t + m < 0\,\,\,\left( * \right).\)

TH1: \(m = 1 \Rightarrow \left( * \right) \Leftrightarrow {t^2} - 2t + 1 < 0 \Leftrightarrow {\left( {t - 1} \right)^2} < 0\) \( \Rightarrow \) bất phương trình vô nghiệm.

\( \Rightarrow m = 1\) thỏa mãn.

TH2: \(m \ne 1\)

\(\begin{array}{l} \Rightarrow \left( * \right) \Leftrightarrow {t^2} - mt - t + m < 0\\ \Leftrightarrow {t^2} - t - \left( {mt - m} \right) < 0\\ \Leftrightarrow t\left( {t - 1} \right) - m\left( {t - 1} \right) < 0\\ \Leftrightarrow \left( {t - 1} \right)\left( {t - m} \right) < 0\,\,\,\end{array}\)

+) Với \(m > 1\) \( \Rightarrow \) Tập nghiệm của bất phương trình là: \(S = \left( {1;\,\,m} \right) \subset \left( {0; + \infty } \right)\)

\( \Rightarrow \) Bất phương trình  \(\left( * \right)\) luôn có nghiệm \(t > 0\)

\( \Rightarrow \left( 1 \right)\) luôn có nghiệm \(x\) \( \Rightarrow m > 1\) không thỏa mãn.

+) Với \(m < 1\) \( \Rightarrow \) Tập nghiệm của bất phương trình là: \(S = \left( {m;\,\,1} \right)\)

\( \Rightarrow \) Bất phương trình  \(\left( * \right)\) luôn có nghiệm \(0 < t < 1\)

\( \Rightarrow \left( 1 \right)\) luôn có nghiệm \(x\) \( \Rightarrow m < 1\) không thỏa mãn.

Vậy chỉ có \(m = 1\) thỏa mãn bài toán.

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com