Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong mặt phẳng Oxyz, cho mặt phẳng \(\left( P \right):\,\,x + y + z - 1 = 0\) và mặt phẳng \(\left( Q

Câu hỏi số 408261:
Vận dụng

Trong mặt phẳng Oxyz, cho mặt phẳng \(\left( P \right):\,\,x + y + z - 1 = 0\) và mặt phẳng \(\left( Q \right):\,\,x - y = 0\). Tìm giao tuyến của hai mặt phẳng (P) và (Q).

Đáp án đúng là: C

Quảng cáo

Câu hỏi:408261
Phương pháp giải

- Gọi \(\Delta \) là giao tuyến của hai mặt phẳng (P) và (Q).

- Tọa độ các giao điểm của hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) thỏa mãn hệ phương trình: \(\left\{ \begin{array}{l}x + y + z - 1 = 0\\x - y = 0\end{array} \right.\).

- Cho lần lượt \(x = 0,\,\,x = 1\) tìm tọa độ 2 điểm \(A,\,\,B \in \Delta \).

- Viết phương trình đường thẳng \(\Delta \) đi qua hai điểm A, B.

- Dựa vào các đáp án chọn điểm đi qua phù hợp và viết phương trình đường thẳng.

Giải chi tiết

Gọi \(\Delta \) là giao tuyến của hai mặt phẳng (P) và (Q).

Tọa độ các giao điểm của hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) thỏa mãn hệ phương trình:

\(\left\{ \begin{array}{l}x + y + z - 1 = 0\\x - y = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = x\\z = 1 - x - y\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}y = x\\z = 1 - 2x\end{array} \right.\).

Cho \(x = 0 \Rightarrow \left\{ \begin{array}{l}y = 0\\z = 1\end{array} \right. \Rightarrow A\left( {0;0;1} \right) \in \Delta \).

Cho \(x = 1 \Rightarrow \left\{ \begin{array}{l}y = 1\\z =  - 1\end{array} \right.\) \( \Rightarrow B\left( {1;1; - 1} \right) \in \Delta \).

Ta có: \(\overrightarrow {AB}  = \left( {1;1; - 2} \right)\) là 1 VTCP của đường thẳng \(\Delta \).

\( \Rightarrow \) Phương trình đường thẳng \(\Delta \) có dạng: \(\left\{ \begin{array}{l}x = t\\y = t\\z = 1 - 2t\end{array} \right.\,\,\left( {t \in \mathbb{R}} \right)\),

Chọn \(t =  - 1\) ta có điểm \(C\left( { - 1; - 1;3} \right) \in \Delta \).

Vậy phương trình đường thẳng \(\Delta \) đi qua \(C\left( { - 1; - 1;3} \right)\) và có 1 VTCP \(\left( {1;1; - 2} \right)\) là: \(\dfrac{{x + 1}}{1} = \dfrac{{y + 1}}{1} = \dfrac{{z - 3}}{{ - 2}}\).

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com