Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Có bao nhiêu giá trị nguyên của m để phương trình sau có 8 nghiệm thực phân biệt \({\left( {{x^2}

Câu hỏi số 408278:
Vận dụng cao

Có bao nhiêu giá trị nguyên của m để phương trình sau có 8 nghiệm thực phân biệt

\({\left( {{x^2} - 6\left| x \right| - 1} \right)^2} - \left( {m - 5} \right)\left| x \right|\left( {\left| x \right| - 6} \right) + 1 - m = 0\)

Đáp án đúng là: A

Quảng cáo

Câu hỏi:408278
Giải chi tiết

Ta có:

\(\begin{array}{l}\,\,\,\,\,\,{\left( {{x^2} - 6\left| x \right| - 1} \right)^2} - \left( {m - 5} \right)\left| x \right|\left( {\left| x \right| - 6} \right) + 1 - m = 0\\ \Leftrightarrow {\left( {{x^2} - 6\left| x \right| - 1} \right)^2} - \left( {m - 5} \right)\left( {{x^2} - 6\left| x \right|} \right) + 1 - m = 0\end{array}\)

Đặt \(t = {x^2} - 6\left| x \right|\). Khi đó phương trình trở thành:

\(\begin{array}{l}{\left( {t - 1} \right)^2} - \left( {m - 5} \right)t + 1 - m = 0\\ \Leftrightarrow {t^2} - 2t + 1 - \left( {m - 5} \right)t + 1 - m = 0\\ \Leftrightarrow {t^2} - \left( {m - 3} \right)t + 2 - m = 0\,\,\left( * \right)\end{array}\)

Xét hàm số \(f\left( x \right) = {x^2} - 6\left| x \right|\), ta vẽ được đồ thị hàm số như sau:

Dựa vào đồ thị hàm số ta thấy phương trình \(t = {x^2} - 6\left| x \right|\) có tối đa 4 nghiệm phân biệt, do đó để phương trình ban đầu có 8 nghiệm phân biệt thì phương trình (*) phải có 2 nghiệm phân biệt thỏa mãn \( - 9 < t < 0\).

Xét phương trình (*) ta có:

\(\begin{array}{l}\Delta  = {\left( {m - 3} \right)^2} - 4\left( {2 - m} \right)\\\Delta  = {m^2} - 6m + 9 - 8 + 4m\\\Delta  = {m^2} - 2m + 1 = {\left( {m - 1} \right)^2}\end{array}\)

Để phương trình có 2 nghiệm phân biệt thì \(\Delta  > 0 \Leftrightarrow m \ne 1\).

Khi đó phương trình có 2 nghiệm phân biệt là \(\left[ \begin{array}{l}{t_1} = \dfrac{{m - 3 + m - 1}}{2} = m - 2\\{t_2} = \dfrac{{m - 3 - m + 1}}{2} =  - 1 \in \left( { - 9;0} \right)\end{array} \right.\).

Để phương trình có 8 nghiệm phân biệt thì \({t_1} \in \left( { - 9;0} \right)\).

\( \Rightarrow  - 9 < m - 2 < 0 \Leftrightarrow  - 7 < m < 2\).

Mà \(m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 6; - 5; - 4; - 3; - 2; - 1;0;1} \right\}\).

Kết hợp điều kiện \(m \ne 1\) \( \Rightarrow m \in \left\{ { - 6; - 5; - 4; - 3; - 2; - 1;0} \right\}\).

Vậy có 7 giá trị của m thỏa mãn yêu cầu bài toán.

Chọn A.

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com