Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = \dfrac{{mx - 2m + 3}}{{x + m}}\) với \(m\) là tham số. Gọi S là tập hợp tất cả các

Câu hỏi số 412931:
Vận dụng

Cho hàm số \(y = \dfrac{{mx - 2m + 3}}{{x + m}}\) với \(m\) là tham số. Gọi S là tập hợp tất cả các giá trị nguyên của \(m\) để hàm số nghịch biến trên khoảng \(\left( {2; + \infty } \right)\). Tìm số phần tử của S.

Đáp án đúng là: B

Quảng cáo

Câu hỏi:412931
Phương pháp giải

- Tính \(y'\).

- Hàm số nghịch biến trên \(\left( {2; + \infty } \right)\)\( \Leftrightarrow y' < 0,\forall x \in \left( {2; + \infty } \right)\)

Giải chi tiết

TXĐ: \(D = \mathbb{R}\backslash \left\{ { - m} \right\}\)

Ta có:\(y' = \dfrac{{{m^2} + 2m - 3}}{{{{\left( {x + m} \right)}^2}}}\)

Hàm số đã cho nghịch biến trên \(\left( {2; + \infty } \right)\)

\(\begin{array}{l} \Leftrightarrow y' < 0,\forall x \in \left( {2; + \infty } \right)\\ \Leftrightarrow \left\{ \begin{array}{l}{m^2} + 2m - 3 < 0\\ - m \notin \left( {2; + \infty } \right)\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} - 3 < m < 1\\ - m \le 2\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} - 3 < m < 1\\m \ge  - 2\end{array} \right.\\ \Leftrightarrow  - 2 \le m < 1\end{array}\)

Mà \(m \in \mathbb{Z}\) nên \(m \in \left\{ { - 2; - 1;0} \right\}\).

Vậy có 3 giá trị của m thỏa mãn.

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com