Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho \(y = {x^3} - m{x^2} - \left( {2{m^2} - 7m + 7} \right) x+\) \( 2\left( {m - 1} \right)\left( {2m - 3} \right)\).

Câu hỏi số 413015:
Vận dụng

Cho \(y = {x^3} - m{x^2} - \left( {2{m^2} - 7m + 7} \right) x+\) \( 2\left( {m - 1} \right)\left( {2m - 3} \right)\). Hàm số đồng biến trên \(\left[ {2; + \infty } \right)\) khi \(m\) thuộc:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:413015
Phương pháp giải

- Tính \(y'\).

- Hàm số đồng biến trên \(\left[ {2; + \infty } \right)\) thì \(y' \ge 0\,\,\forall x \in \left[ {2; + \infty } \right)\).

- Giải bất phương trình \(a{x^2} + bx + c > 0\,\,\forall x \in \left( {\alpha ;\beta } \right)\).

   + TH1: \(\left\{ \begin{array}{l}a > 0\\\Delta  \le 0\end{array} \right.\).

   + TH2: \(\Delta  > 0\), phương trình có 2 nghiệm phân biệt \({x_1} < {x_2}\). Tìm điều kiện để \(\left( {\alpha ;\beta } \right)\) là tập con của tập nghiệm của bất phương trình  \(a{x^2} + bx + c > 0\).

Giải chi tiết

Hàm số đã cho xác định trên \(\left[ {2; + \infty } \right)\).

Ta có: \(y' = 3{x^2} - 2mx - 2{m^2} + 7m - 7\).

Để hàm số đồng biến trên \(\left[ {2; + \infty } \right)\) thì \(y' \ge 0\,\,\forall x \in \left[ {2; + \infty } \right)\)

\( \Leftrightarrow 3{x^2} - 2mx - 2{m^2} + 7m - 7 \ge 0\,\,\forall x \in \left[ {2; + \infty } \right)\,\,\left( 1 \right)\).

Ta có:

\(\begin{array}{l}\Delta ' = {m^2} - 3\left( { - 2{m^2} + 7m - 7} \right)\\\Delta ' = 7{m^2} - 21m + 21 > 0\,\,\forall m \in \mathbb{R}\end{array}\)

Khi đó \(y' = 0\) có 2 nghiệm \({x_1},\,\,{x_2}\) phân biệt (giả sử \({x_1} < {x_2}\)).

Khi đó bất phương trình (1) có sơ đồ miền nghiệm là:

 

Ta có \(y' \ge 0\,\,\forall x \in \left[ {2; + \infty } \right)\) \( \Leftrightarrow \left[ {2; + \infty } \right) \subset S\).

\(\begin{array}{l} \Leftrightarrow {x_1} < {x_2} \le 2\\ \Leftrightarrow \left\{ \begin{array}{l}{x_1} + {x_2} < 4\\\left( {{x_1} - 2} \right)\left( {{x_2} - 2} \right) \ge 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{x_1} + {x_2} < 4\\{x_1}{x_2} - 2\left( {{x_1} + {x_2}} \right) + 4 \ge 0\end{array} \right.\,\,\left( * \right)\end{array}\)

Áp dụng định lí Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = \dfrac{{2m}}{3}\\{x_1}{x_2} = \dfrac{{ - 2{m^2} + 7m - 7}}{3}\end{array} \right.\).

\(\begin{array}{l} \Rightarrow \left( * \right) \Leftrightarrow \left\{ \begin{array}{l}\dfrac{{2m}}{3} < 4\\\dfrac{{ - 2{m^2} + 7m - 7}}{3} - 2.\dfrac{{2m}}{3} + 4 \ge 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}m < 6\\ - 2{m^2} + 7m - 7 - 4m + 12 \ge 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}m < 6\\ - 2{m^2} + 3m + 5 \ge 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}m < 6\\ - 1 \le m \le \dfrac{5}{2}\end{array} \right. \Leftrightarrow  - 1 \le m \le \dfrac{5}{2}\end{array}\)   

Vậy \(m \in \left[ { - 1;\dfrac{5}{2}} \right]\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com