Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc ĐGNL Hà Nội, ĐGNL HCM - Ngày 17-18/01/2026
↪ ĐGNL Hà Nội (HSA) - Trạm 3 ↪ ĐGNL HCM (V-ACT) - Trạm 3
Giỏ hàng của tôi

Cho tam giác ABC đều, có diện tích bằng \({s_1}\) và \(AH\) là đường cao. Quay tam giác ABC quanh

Câu hỏi số 421315:
Vận dụng

Cho tam giác ABC đều, có diện tích bằng \({s_1}\) và \(AH\) là đường cao. Quay tam giác ABC quanh đường thẳng \(AH\) ta thu được hình nón có diện tích xung quanh bằng \({s_2}\). Tính \(\dfrac{{{s_1}}}{{{s_2}}}\).

Đáp án đúng là: B

Quảng cáo

Câu hỏi:421315
Phương pháp giải

- Diện tích tam giác đều cạnh \(a\) là \(S = \dfrac{{{a^2}\sqrt 3 }}{4}\).

- Quay tam giác đều \(ABC\) quanh đường cao \(AH\) ta thu được hình nón có đường sinh \(l = AB = a\), bán kính đáy \(r = \dfrac{{BC}}{2}\).

- Diện tích xung quanh của hình nón có đường sinh \(l\), bán kính đáy \(r\) là: \(\pi rl\).

Giải chi tiết

Giả sử tam giác ABC đều cạnh a  \( \Rightarrow {s_1} = {S_{ABC}} = \dfrac{{{a^2}\sqrt 3 }}{4}\)

Quay tam giác ABC quanh đường thẳng \(AH\) ta thu được hình nón có đường sinh \(l = AB = a\), bán kính đáy \(r = \dfrac{{BC}}{2} = \dfrac{a}{2}\), do đó diện tích xung quanh của hình nón bằng:  \({s_2} = \pi rl = \pi .\dfrac{a}{2}.a = \dfrac{{\pi {a^2}}}{2}\).

Vậy \(\dfrac{{{s_1}}}{{{s_2}}} = \dfrac{{\dfrac{{{a^2}\sqrt 3 }}{4}}}{{\dfrac{{\pi {a^2}}}{2}}} = \dfrac{{\sqrt 3 }}{{2\pi }}\).

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com