Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Biết rằng đồ thị \(\left( H \right):y = \dfrac{{{x^2} + 2x + m}}{{x - 2}}\) (với m là tham số thực) có

Câu hỏi số 421325:
Vận dụng

Biết rằng đồ thị \(\left( H \right):y = \dfrac{{{x^2} + 2x + m}}{{x - 2}}\) (với m là tham số thực) có hai điểm cực trị A, B. Hãy tính khoảng cách từ gốc tọa độ đến đường thẳng AB.

Đáp án đúng là: A

Quảng cáo

Câu hỏi:421325
Phương pháp giải

- Tách \(y = \dfrac{{{x^2} + 2x + m}}{{x - 2}} = x + 4 + \dfrac{{m + 8}}{{x - 2}}\) và tính \(y'\).

- Phân tích: \(y = f\left( x \right).y' + g\left( x \right)\), suy ra phương trình đường thẳng đi qua hai điểm cực trị là \(y = g\left( x \right)\).

- Khoảng cách từ điểm \(M\left( {{x_0};{y_0}} \right)\) đến đường thẳng \(ax + by + c = 0\) là: \(d\left( {M;d} \right) = \dfrac{{\left| {a{x_0} + b{y_0} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}\).

Giải chi tiết

TXĐ: \(D = \mathbb{R}\backslash \left\{ 2 \right\}\).

Ta có:

\(\begin{array}{l}y = \dfrac{{{x^2} + 2x + m}}{{x - 2}} = x + 4 + \dfrac{{m + 8}}{{x - 2}}\\ \Rightarrow y' = 1 - \dfrac{{m + 8}}{{{{\left( {x - 2} \right)}^2}}}\end{array}\)

Khi đó: \(y =  - \left( {x - 2} \right)\left( {1 - \dfrac{{m + 8}}{{{{\left( {x - 2} \right)}^2}}}} \right) + 2x + 2\)\( \Leftrightarrow y =  - \left( {x - 2} \right).y' + 2x + 2\).

Giả sử \(A\left( {{x_1};{y_1}} \right),B\left( {{x_2};{y_2}} \right)\) là hai điểm cực trị của đồ thị hàm số

\( \Rightarrow \left\{ \begin{array}{l}{y_1} =  - \left( {{x_1} - 2} \right).y'\left( {{x_1}} \right) + 2{x_1} + 2 = 2{x_1} + 2\\{y_2} =  - \left( {{x_2} - 2} \right).y'\left( {{x_2}} \right) + 2{x_2} + 2 = 2{x_2} + 2\end{array} \right.\)

\( \Rightarrow \) Phương trình đường thẳng đi qua hai điểm cực trị trên là: \(y = 2x + 2 \Leftrightarrow 2x - y + 2 = 0\,\,\left( d \right)\).

Vậy \(d\left( {O;d} \right) = \dfrac{{\left| {2.0 - 0 + 2} \right|}}{{\sqrt {{2^2} + {1^2}} }} = \dfrac{2}{{\sqrt 5 }}.\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com