Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Giải phương trình \({\cos ^2}x - 3\sin x + 3 = 0\).

Câu hỏi số 435067:
Thông hiểu

Giải phương trình \({\cos ^2}x - 3\sin x + 3 = 0\).

Đáp án đúng là: B

Quảng cáo

Câu hỏi:435067
Phương pháp giải

- Sử dụng công thức \({\cos ^2}x = 1 - {\sin ^2}x\), đưa phương trình về dạng phương trình bậc hai đối với một hàm số lượng giác.

- Giải phương trình bậc hai, sau đó giải phương trình lượng giác cơ bản.

Giải chi tiết

Ta có:

\(\begin{array}{l}\,\,\,\,\,\,{\cos ^2}x - 3\sin x + 3 = 0\\ \Leftrightarrow 1 - {\sin ^2}x - 3\sin x + 3 = 0\\ \Leftrightarrow {\sin ^2}x + 3\sin x - 4 = 0\\ \Leftrightarrow \left[ \begin{array}{l}\sin x = 1\\\sin x =  - 4\,\,\left( {KTM} \right)\end{array} \right.\\ \Leftrightarrow x = \dfrac{\pi }{2} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)

Vậy nghiệm của phương trình là \(x = \dfrac{\pi }{2} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).

Đáp án cần chọn là: B

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com