Cho hình chóp \(S.ABC\) có đáy là tam giác vuông tại \(A,\)\(AB = a,AC = 2a\). Đỉnh \(S\) cách đều
Cho hình chóp \(S.ABC\) có đáy là tam giác vuông tại \(A,\)\(AB = a,AC = 2a\). Đỉnh \(S\) cách đều các đỉnh \(A,\,\,B,\,\,C\) và mặt bên \(\left( {SAB} \right)\) hợp với mặt đáy một góc \({60^0}\). Tính theo \(a\) thể tích khối chóp \(S.ABC\).
Đáp án đúng là: C
Quảng cáo
- Chóp có các cạnh bên bằng nhau có chân đường cao trùng với tâm đường tròn ngoại tiếp đáy.
- Xác định góc giữa hai mặt phẳng là góc giữa hai đường thẳng lần lượt thuộc hai mặt phẳng và cùng vuông góc với giao tuyến.
- Sử dụng tính chất đường trung bình và tỉ số lượng giác của góc nhọn trong tam giác vuông tính chiều cao của khối chóp.
- Tính thể tích theo công thức \(V = \dfrac{1}{3}Sh\), trong đó \(S\) là diện tích đáy, \(h\) là chiều cao tương ứng.
Đáp án cần chọn là: C
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













