Cho cấp số cộng \(\left( {{u_n}} \right)\) với công sai \(d\). Biết rằng \(\left\{ \begin{array}{l}{u_3} +
Cho cấp số cộng \(\left( {{u_n}} \right)\) với công sai \(d\). Biết rằng \(\left\{ \begin{array}{l}{u_3} + {u_5} = 2d - 2\\u_2^2 + u_4^2 = 20\end{array} \right.\). Tìm số hạng đầu và công sai của cấp số cộng.
Đáp án đúng là: C
Quảng cáo
Sử dụng công thức số hạng tổng quát \({u_n} = {u_1} + \left( {n - 1} \right)d\) và tính chất cấp số cộng \({u_{n - 1}} + {u_{n + 1}} = 2{u_n}\). Đưa hệ phương trình đã cho về hệ 2 ẩn \({u_4},\,\,d\). Giải hệ tìm \({u_4},\,\,d\). Sau đó tìm \({u_1} = {u_4} - 3d\).
Đáp án cần chọn là: C
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












