Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a, \(AD = a\sqrt 3 \). Hình chiếu vuông

Câu hỏi số 514317:
Vận dụng

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a, \(AD = a\sqrt 3 \). Hình chiếu vuông góc H của S trên mặt đáy trùng với trọng tâm tam giác ABC và \(SH = \dfrac{a}{2}\). Gọi M, N lần lượt là trung điểm các cạnh BC và SC. Gọi \(\alpha \) là góc giữa đường thẳng MN với mặt đáy (ABCD). Mệnh đề nào sau đây đúng?

Đáp án đúng là: B

Quảng cáo

Câu hỏi:514317
Phương pháp giải

Áp dụng phương pháp tìm góc giữa đường thẳng và mặt phẳng – hệ thức lượng trong tam giác vuông để giải quyết yêu cầu của bài toán

Giải chi tiết

Ta có MN // SB. Do đó \(\widehat {\left( {MN;\left( {ABCD} \right)} \right)} = \widehat {\left( {SB;\left( {ABCD} \right)} \right)}\).

Do \(SH \bot \left( {ABCD} \right)\) nên suy ra

\(\widehat {\left( {MN;\left( {ABCD} \right)} \right)} = \widehat {\left( {SB;\left( {ABCD} \right)} \right)} = \widehat {\left( {SB;HB} \right)} = \widehat {SBH}\).

Ta có \(BD = \sqrt {A{B^2} + A{D^2}}  = \sqrt {{a^2} + 3{a^2}}  = 2a;\,\,BH = \dfrac{{BD}}{3} = \dfrac{{2a}}{3}\).

Tam giác SHB, có \(\tan \widehat {SBH} = \dfrac{{SH}}{{BH}} = \dfrac{{\dfrac{a}{2}}}{{\dfrac{{2a}}{3}}} = \dfrac{3}{4}\).

Đáp án cần chọn là: B

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com