Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Xét các số phức z thỏa mãn \(\left| {z - i} \right| = \left| {z + 3i} \right|\). Giá trị nhỏ nhất của

Câu hỏi số 543194:
Vận dụng cao

Xét các số phức z thỏa mãn \(\left| {z - i} \right| = \left| {z + 3i} \right|\). Giá trị nhỏ nhất của biểu thức\(\left| {z + 2 - i} \right| + \left| {z - 3 - 3i} \right|\) bằng

Đáp án đúng là: A

Quảng cáo

Câu hỏi:543194
Phương pháp giải

Bước 1: Tìm tập hợp biểu diễn số phức thỏa mãn \(\left| {z - i} \right| = \left| {z + 3i} \right|\) và biểu diễn trên mặt phẳng tọa độ.

Bước 2: Biểu diễn số phức \({z_1} = i - 2;{z_2} = 3 + 3i\) trên mặt phẳng tọa độ và tìm giá trị nhỏ nhất của \(\left| {z - {z_1}} \right| + \left| {z - {z_2}} \right|\)

\(\left| {z - {z_0}} \right|\) là độ dài đoạn thẳng nối hai điểm biểu diễn của \(z\) và \({z_0}\)

Giải chi tiết

Bước 1: Tìm tập hợp biểu diễn số phức thỏa mãn \(\left| {z - i} \right| = \left| {z + 3i} \right|\) và biểu diễn trên mặt phẳng tọa độ.

Gọi \(A\left( {0;1} \right)\) là điểm biểu diễn số phức \(i\)

\(B\left( {0; - 3} \right)\) là điểm biểu diễn số phức \( - 3i\)

\(M\left( {a;b} \right)\) là điểm biểu diễn số phức \(z = a + bi\)

Khi đó \(\left| {z - i} \right| = \left| {z + 3i} \right|\) tương đương với điểm M là điểm thỏa mãn: MA=MB

Khi đó tập hợp điểm M là đường trung trực d của đoạn thẳng AB.

Gọi H là trung điểm của AB \( \Rightarrow H\left( {0; - 1} \right)\)

Ta có đường thẳng \(d:\,\,y =  - 1\).

Bước 2: Biểu diễn số phức \({z_1} =  - 2 + i;{z_2} = 3 + 3i\) trên mặt phẳng tọa độ và tìm giá trị nhỏ nhất của \(\left| {z - {z_1}} \right| + \left| {z - {z_2}} \right|\)

Gọi C, D lần lượt là điểm biểu diễn số phức \({z_1} =  - 2 + i;{z_2} = 3 + 3i\)

Khi đó bài toán trở thành tìm giá trị nhỏ nhất của MC+MD.

Lấy điểm D’ đối xứng D qua d.

\( \Rightarrow MC + MD = MC + MD' \le CD'\)

Đường thẳng DD’ qua D và vuông góc với đường thẳng d có phương trình là:x=3

\( \Rightarrow \) Giao điểm của DD’ và d là K(3;-1)

K là trung điểm của DD’ nên D’(3;-5)

\(CD' = \sqrt {{5^2} + {6^2}}  = \sqrt {61} \)

Vậy giá trị nhỏ nhất của \(\left| {z + 2 - i} \right| + \left| {z - 3 - 3i} \right|\) là \(\sqrt {61} \)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com