Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^2} + x - 6\). Có bao nhiêu giá
Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^2} + x - 6\). Có bao nhiêu giá trị nguyên của \(m\) để hàm số \(y = f\left( {{x^3} - 3{x^2} - 9x + m} \right)\) có đúng 6 điểm cực trị?
Đáp án đúng là: C
Quảng cáo
Sử dụng hàm đặc trưng tìm được quan hệ giữa \(x,\,\,y\) từ đó tìm giá trị nhỏ nhất \(m\) của biểu thức \(P = \dfrac{{y + 4}}{x}\).
Đáp án cần chọn là: C
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com














