Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho phương trình\(\left( {4\log _2^2x + {{\log }_2}x - 5} \right)\sqrt {{7^x} - m}  = 0\) (m là tham số

Câu hỏi số 599553:
Vận dụng cao

Cho phương trình\(\left( {4\log _2^2x + {{\log }_2}x - 5} \right)\sqrt {{7^x} - m}  = 0\) (m là tham số thực). Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng hai nghiệm phân biệt?

Đáp án đúng là: A

Quảng cáo

Câu hỏi:599553
Phương pháp giải

Tìm ĐKXĐ của phương trình.

Giải phương trình tích.

Biện luận để phương trình có đúng hai nghiệm.

Giải chi tiết

ĐKXĐ: \(\left\{ \begin{array}{l}x > 0\\{7^x} - m \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > 0\\x \ge {\log _7}m\,\,\left( {m > 0} \right)\end{array} \right.\).

Ta có:

\(\begin{array}{l}\left( {4\log _2^2x + {{\log }_2}x - 5} \right)\sqrt {{7^x} - m}  = 0\\ \Leftrightarrow \left[ \begin{array}{l}4\log _2^2x + {\log _2}x - 5 = 0\\{7^x} - m = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}{\log _2}x = 1\\{\log _2}x =  - \dfrac{5}{4}\\x = {\log _7}m\,\,\left( {m > 0} \right)\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = {2^{ - \dfrac{5}{4}}}\\x = {\log _7}m\end{array} \right.\end{array}\)

Để phương trình có đúng 2 nghiệm thì:

TH1: \(2 > {\log _7}m \ge {2^{ - \dfrac{5}{4}}} \Leftrightarrow {7^2} > m \ge {7^{{2^{ - \dfrac{5}{4}}}}}\).

Mà \(m \in {\mathbb{Z}^ + } \Rightarrow m \in \left\{ {3;4;5;...;48} \right\} \Rightarrow \) Có 46 giá trị m thỏa mãn.

TH2: \({\log _7}m \le 0 \Leftrightarrow m \le 1\).

Mà \(m \in {\mathbb{Z}^ + } \Rightarrow m = 1\) Có 1 giá trị m thỏa mãn.

Vậy có tất cả 47 giá trị m thỏa mãn.

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com