Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có phương trình \({x^2} + {y^2} + {z^2} = 4\)
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có phương trình \({x^2} + {y^2} + {z^2} = 4\) và mặt phẳng \((\alpha )\) có phương trình z = 1. Biết rằng mặt phẳng \((\alpha )\) chia khối cầu (S) thành hai phần. Khi đó, tỉ số thể tích của phần nhỏ với phần lớn là:
Đáp án đúng là: B
Quảng cáo
Thể tích V của phần vật thể giới hạn bởi hai mặt phẳng x = a và x = b (a < b), có thiết diện bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ \(x\,\,\left( {a \le x \le b} \right)\) có diện tích S(x) là: \(V = \int\limits_a^b {S\left( x \right)} dx\).
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












