Trong không gian Oxyz, cho đường thẳng \(d:\dfrac{{x + 1}}{1} = \dfrac{{y + 2}}{1} = \dfrac{{z - 1}}{1}\) và
Trong không gian Oxyz, cho đường thẳng \(d:\dfrac{{x + 1}}{1} = \dfrac{{y + 2}}{1} = \dfrac{{z - 1}}{1}\) và mặt cầu \((S):{x^2} + {y^2} + {z^2} - 2x - 4y + 6z - 13 = 0\). Lấy điểm M(a;b;c) với a < 0 thuộc đường thẳng d sao cho từ M kẻ được ba tiếp tuyến MA, MB, MC đến mặt cầu (S) (A, B, C là tiếp điểm) thoả mãn \(\angle AMB = {60^0},\) \(\angle BMC = {90^0}\), \(\angle CMA = {120^0}\). Tổng \(a + b + c\) bằng
Đáp án đúng là: C
Quảng cáo
Chứng minh tam giác ABC vuông tại B.
Tính MI.
Gọi \(M\left( {t - 1;t - 2;t + 1} \right) \in d\), giải phương trình MI = 6 tìm t.
Đáp án cần chọn là: C
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













