Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật tâm \(O\), \(SA\) vuông góc với mặt
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật tâm \(O\), \(SA\) vuông góc với mặt phẳng đáy.
a) Chứng minh \(A{\rm{D}} \bot (SAB).\)
b) Tính số đo góc của góc nhị diện \(\left[ {B,SA,D} \right]\)
Quảng cáo
Góc nhị diện là góc giữa 2 mặt phẳng
Góc nhị diện đc xác định bằng cách: Gọi d là giao tuyến của 2 mặt phẳng, A là 1 điểm trên d. Từ A dựng 2 tia Ax, Ay lần lượt nằm trên 2 mặt phẳng đã cho và vuông góc với d. Góc nhị diện là xAy.
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













