Cho tam giác \(ABC\) vuông tại \(A\). Vẽ \(BB'\) và \(CC'\) cùng vuông góc với \((ABC)\).a) Chứng minh
Cho tam giác \(ABC\) vuông tại \(A\). Vẽ \(BB'\) và \(CC'\) cùng vuông góc với \((ABC)\).
a) Chứng minh \(\left( {ABB'} \right) \bot \left( {ACC'} \right)\).
b) Gọi \(AH,AK\) là các đường cao của \(\Delta ABC\) và \(\Delta AB'C'\). Chứng minh \(\left( {BCC'B'} \right)\) và \(\left( {AB'C'} \right)\) cùng vuông góc với \((AHK)\).
Quảng cáo
Nếu mặt phẳng này chứa một đường thẳng mà đường thẳng đó vuông góc với mặt phẳng kia thì hai mặt phẳng đó vuông góc với nhau
\(\left. {\begin{array}{*{20}{l}}{a \subset (P)}\\{a \bot (Q)}\end{array}} \right\} \Rightarrow (P) \bot (Q)\).
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













