Cho hình hộp \(ABCD.A'B'C'D'\). Gọi \(G\) và \(G'\) lần lượt là trọng tâm của
Cho hình hộp \(ABCD.A'B'C'D'\). Gọi \(G\) và \(G'\) lần lượt là trọng tâm của hai tam giác \(B'D'A\) và \(BDC'\). Khi đó: \(A'C = k.GG'\). Tìm \(k\)?
Quảng cáo
Gọi \(O,{O^\prime }\) và \(Q\) lần lượt là tâm các hình bình hành \(ABCD,A'B'C'D'\) và \(AA'C'C\).
Áp dụng tính chất trọng tâm trong các tam giác \(AA'C'\)và \(ACC'\) suy ra \(A'G = GG' = G'C = \dfrac{1}{3}A'C\)
Từ đó suy ra \(A'C = 3GG'\)
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













