Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tứ diện ABCD có BCD là tam giác vuông tại đỉnh $B$, cạnh $CD = a,BD = \dfrac{a\sqrt{6}}{3}$, $AB =

Câu hỏi số 779949:
Vận dụng

Cho tứ diện ABCD có BCD là tam giác vuông tại đỉnh $B$, cạnh $CD = a,BD = \dfrac{a\sqrt{6}}{3}$, $AB = AC = AD = \dfrac{a\sqrt{3}}{2}$. Tính cosin của góc nhị diện [A, BC, D].

Đáp án đúng là: 1/2

Quảng cáo

Câu hỏi:779949
Phương pháp giải

Xác định góc nhị diện [A, BC, D].

Giải chi tiết

Gọi M, H lần lượt là trung điểm của BC, CD.

Do $\Delta BCD$ vuông tại $B$ nên $BH = CH = DH$ hay $H$ là tâm đường tròn ngoại tiếp $\Delta BCD$.

Mà $AB = AC = AD$ nên AH là đường cao kẻ từ $A$ xuống $(BCD)$ hay $AH\bot(BCD)$.

$\left. \Rightarrow AH\bot BC. \right.$ (1)

M, H là trung điểm của BC, CD nên MH là đường trung bình của $\Delta BCD$

$\left. \Rightarrow\left\{ \begin{array}{l} {MH = \dfrac{1}{2}BD = \dfrac{a\sqrt{6}}{6}.} \\ {MH//BD} \end{array} \right. \right.$

Mà $MD\bot BC$ nên $MH\bot BC$. (2)

Từ (1), (2) suy ra: $BC\bot(AMH)$.

Suy ra: $\left\{ \begin{array}{l} {BC\bot AM} \\ {BC\bot MH} \end{array}\Rightarrow\lbrack A,BC,D\rbrack = \widehat{AMH} \right.$.

Lại có: $AH = \sqrt{AC^{2} - CH^{2}} = \sqrt{\left( \dfrac{a\sqrt{3}}{2} \right)^{2} - \left( \dfrac{a}{2} \right)^{2}} = \dfrac{a\sqrt{2}}{2}$.

$\left. \Rightarrow\tan\widehat{AMH} = \dfrac{AH}{MH} = \sqrt{3}\Rightarrow\widehat{AMH} = \dfrac{\pi}{3}\Rightarrow\cos\widehat{AMH} = \dfrac{1}{2}. \right.$

Đáp án cần điền là: 1/2

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com